DOI QR코드

DOI QR Code

Exploration of Alternative Protein Food and Cyclic Dipeptides that Help Complement Alternative Protein Sources

  • DaGyeong JUNG (Laboratory of Microbial Physiology and Biotechnology, Department of Food and Nutrition, College of BioConvergence, and Institute of Food and Nutrition Science, Eulji University) ;
  • Min-Kyu KWAK (Laboratory of Microbial Physiology and Biotechnology, Department of Food and Nutrition, College of Bio-Convergence, and Institute of Food and Nutrition Science, Eulji University)
  • 투고 : 2024.09.13
  • 심사 : 2024.11.05
  • 발행 : 2024.11.30

초록

The global movement towards sustainable food systems has given rise to a growing interest in alternative protein sources, including plant proteins, insect proteins, cultured meats, and microbially derived proteins. This study focuses on the latest trends and future developments in this field, with a particular emphasis on state-of-the-art technologies and methodologies designed to overcome the obstacles associated with alternative proteins, including taste, flavor and texture. A principal objective of this research is to identify proteins that will facilitate the large-scale production of cyclic dipeptides (CDPs), based on the hypothesis that CDPs can leverage their distinctive biochemical attributes to enhance the appeal of alternative protein sources. One of the key challenges in this research is identifying the proteins required for CDP production. Previous studies have shown that lactic acid bacteria, such as Weissella cibaria, Lactobacillus sakei, Leuconostoc mesenteroides, and Pediococcus pentosaceus which were isolated from kimchi exhibit strong antimicrobial activity, with CDPs identified among their metabolites. This observation has prompted the utilization of these bacteria in the present study. The findings of this study suggest that CDPs could be an effective solution for developing alternative protein sources and could represent a significant advancement in food technology innovation.

키워드

과제정보

This work was supported by the BK21 Plus project of the National Research Foundation of Korea (NRF) Grant funded by the Korea government. This research was also supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT of the Korea government (MSIT) (NRF-2021R1F1A1061581) and by a grant from Eulji University in 2023. The funders had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication

참고문헌

  1. Aiking, H. (2014). Protein production: planet, profit, plus people? The American journal of clinical nutrition, 100, 483S489S. 
  2. Assadpour, E., & Mahdi Jafari, S. (2019). A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical reviews in food science and nutrition, 59(19), 3129-3151. 
  3. Banach, J., Van Der Berg, J., Kleter, G., Van Bokhorst-van De Veen, H., Bastiaan-Net, S., Pouvreau, L., & Van Asselt, E. (2023). Alternative proteins for meat and dairy replacers: Food safety and future trends. Critical reviews in food science and nutrition, 63(32), 11063-11080. 
  4. Borthwick, A. D., & Da Costa, N. C. (2017). 2, 5-diketopiperazines in food and beverages: Taste and bioactivity. Critical reviews in food science and nutrition, 57(4), 718-742. 
  5. Chen, M., Dewis, M., Kraut, K., Merritt, D., Reiber, L., Trinnaman, L., & Da Costa, N. (2009). 2, 5-Diketopiperazines (cyclic dipeptides) in beef: Identification, synthesis, and sensory evaluation. Journal of food Science, 74(2), C100-C105. 
  6. Chi, Y. H., Koo, S. S., Oh, H. T., Lee, E. S., Park, J. H., Phan, K. A. T., Wi, S. D., Bae, S. B., Paeng, S. K., & Chae, H. B. (2019). The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Frontiers in Plant science, 10, 750. 
  7. Chriki, S., & Hocquette, J.-F. (2020). The myth of cultured meat: a review. Frontiers in nutrition, 7, 7. 
  8. Drewnowski, A. P. (2018). What lies behind the transition from plant-based to animal protein? AMA journal of ethics, 20(10). 
  9. Fernandez, M., & Zuniga, M. (2006). Amino acid catabolic pathways of lactic acid bacteria. Critical reviews in microbiology, 32(3), 155-183. 
  10. Fugaban, J. I. I., Vazquez Bucheli, J. E., Park, Y. J., Suh, D. H., Jung, E. S., Franco, B. D. G. d. M., Ivanova, I. V., Holzapfel, W. H., & Todorov, S. D. (2022). Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. Journal of applied microbiology, 132(1), 311-330. 
  11. Giessen, T. W., & Marahiel, M. A. (2014). The tRNA-dependent biosynthesis of modified cyclic dipeptides. International journal of molecular sciences, 15(8), 14610-14631. 
  12. Gomez, B., Barba, F. J., Dominguez, R., Putnik, P., Kovacevic, D. B., Pateiro, M., Toldra, F., & Lorenzo, J. M. (2018). Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends in Food Science & Technology, 82, 135-147. 
  13. Hanabusa, K., Matsumoto, Y., Miki, T., Koyama, T., & Shirai, H. (1994). Cyclo (dipeptide) s as low-molecular-mass gelling agents to harden organic fluids. Journal of the Chemical Society, Chemical Communications(11), 1401-1402. 
  14. Hristov, A., Oh, J., Firkins, J., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H., Adesogan, A., Yang, W., & Lee, C. (2013). Special topics-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of animal science, 91(11), 5045-5069. 
  15. Ismail, B. P., Senaratne-Lenagala, L., Stube, A., & Brackenridge, A. (2020). Protein demand: review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers, 10(4), 53-63. https://doi.org/10.1093/af/vfaa040 
  16. Joseph, P., Searing, A., Watson, C., & McKeague, J. (2020). Alternative proteins: Market research on consumer trends and emerging landscape. Meat and Muscle Biology, 4(2). 
  17. Kvint, K., Nachin, L., Diez, A., & Nystrom, T. (2003). The bacterial universal stress protein: function and regulation. Current opinion in microbiology, 6(2), 140-145. 
  18. Kwak, M.-K., Liu, R., & Kang, S.-O. (2018). Antimicrobial activity of cyclic dipeptides produced by Lactobacillus plantarum LBP-K10 against multidrug-resistant bacteria, pathogenic fungi, and influenza A virus. Food Control, 85, 223-234. 
  19. Kwak, M.-K., Liu, R., Kwon, J.-O., Kim, M.-K., Kim, A. H., & Kang, S.-O. (2013). Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza a virus. Journal of Microbiology, 51, 836-843. 
  20. Liceaga, A. M., Aguilar-Toala, J. E., Vallejo-Cordoba, B., Gonzalez-Cordova, A. F., & Hernandez-Mendoza, A. (2022). Insects as an alternative protein source. Annual Review of Food Science and Technology, 13, 19-34. 
  21. Ma, K. K., Greis, M., Lu, J., Nolden, A. A., McClements, D. J., & Kinchla, A. J. (2022). Functional performance of plant proteins. Foods, 11(4), 594. 
  22. Manchineella, S., & Govindaraju, T. (2012). Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: gelation and ordered hierarchical architectures. RSC advances, 2(13), 5539-5542. 
  23. Matsushita-Morita, M., Furukawa, I., Suzuki, S., Yamagata, Y., Koide, Y., Ishida, H., Takeuchi, M., Kashiwagi, Y., & Kusumoto, K. I. (2010). Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. Journal of applied microbiology, 109(1), 156-165. 
  24. Nandan, A. S., & Nampoothiri, K. M. (2014). Unveiling aminopeptidase P from Streptomyces lavendulae: molecular cloning, expression and biochemical characterization. Enzyme and microbial technology, 55, 7-13. 
  25. Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., & Alagawany, M. (2021). Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 531, 735885. 
  26. Skinnider, M. A., Johnston, C. W., Merwin, N. J., Dejong, C. A., & Magarvey, N. A. (2018). Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis. BMC genomics, 19, 1-11. 
  27. Son, J., Hong, Y., Seong, H., Oh, Y. S., & Kwak, M.-K. (2024). The high-throughput solid-phase extraction of cis-cyclo (L-Leu-L-Pro) and cis-cyclo (L-Phe-L-Pro) from Lactobacillus plantarum demonstrates efficacy against multidrug-resistant bacteria and influenza A (H3N2) virus. Frontiers in Molecular Biosciences, 11, 1346598. 
  28. Udawat, P., Jha, R. K., Sinha, D., Mishra, A., & Jha, B. (2016). Overexpression of a cytosolic abiotic stress responsive universal stress protein (Sb USP) mitigates salt and osmotic stress in transgenic tobacco plants. Frontiers in Plant science, 7, 518. 
  29. Yadav, S. C., Kumari, A., & Yadav, R. (2011). Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides, 32(1), 173-187. 
  30. Zhao, K., Xing, R., & Yan, X. (2021). Cyclic dipeptides: Biological activities and self-assembled materials. Peptide Science, 113(2), e24202.