DOI QR코드

DOI QR Code

식물공장 자동화를 위한 로메인 상추 생육 제어 시스템

Growth Control System for Romaine Lettuce in Automated Plant Factories

  • 이민혜 (원광대학교 교양교육원) ;
  • 유태수 (테이블컵) ;
  • 임순자 (원광대학교 전자공학과)
  • Min-Hye Lee (Center for General Education, Wonkwang University) ;
  • Tae-Soo Yu (Tablecup) ;
  • Soon-Ja Lim (Department of Electronic Engineering, Wonkwang University)
  • 투고 : 2024.09.10
  • 심사 : 2024.10.20
  • 발행 : 2024.10.28

초록

기후 변화와 환경 오염으로 인해 건강한 먹거리에 대한 수요가 증가하면서 육묘산업의 발전이 요구되고 있으나, 인구 고령화로 인한 기술 인력이 부족해지면서 작물의 생산과 관리가 어려워지고 있다. 이에 따라, 자동화된 작물 생육 시스템의 필요성이 높아지고 있으며, 고품질 작물의 안정적인 생산을 위해서는 모종의 생육 환경을 세밀하게 조절하는 것이 필수적이다. 본 연구에서는 식물공장 내부 환경을 모니터링하고 조절할 수 있는 자동화 제어시스템을 제안한다. 제안하는 시스템은 아두이노 및 다양한 센서를 통해 온도, 습도, 광량, 양액 공급을 관리하며, 고효율의 공기 순환 방식으로 내부 온도의 변동을 최소화한다. 로메인 상추를 대상으로 실험을 진행한 결과, 제안하는 시스템은 온도 편차 ±1℃, pH 6.0, 전기 전도도 1.6 dS/m으로 식물공장 표준 성능에 부합하였으며, 노지 환경에서 재배된 작물보다 잎의 성장이 우수함을 확인하였다. 제안된 시스템은 노동 비용의 절감과 고품질 작물의 재배 효율성 향상에 도움을 줄 수 있을 것으로 기대된다.

As the demand for healthy food increases, an automated system capable of precisely controlling the growth environment is essential for stable crop production. This study proposes an automated system for monitoring and controlling plant factories. It manages the growth environment using Arduino and various sensors, utilizing an efficient air circulation method to maintain stable internal temperatures. The experiment showed that the proposed system maintained a temperature deviation of ±1℃, a pH of 6.0, and an electrical conductivity of 1.6 dS/m, meeting standard performance. Additionally, leaf growth was found to be superior compared to crops grown in open-field conditions. The proposed system is expected to help reduce labor costs and improve the efficiency of cultivating high-quality crops.

키워드

과제정보

This paper was supported by Wonkwang University in 2023.

참고문헌

  1. M. H. Lee, T. S. Yu, S. Y. Shin, & S. J. Lim. (2023). Designing a Growth Management System for Vegetable Seedlings. in Proceeding of the 54th Fall Conference on Korea Institute of information and Communication Engineering, Anseong: Korea, 449-450.
  2. J. H. Kim. (2009). Trends and prospects of plant factories. Retrieved from http://library.krei.re.kr/pyxis-api/1/digital-files/605ba745-9c42-2a94-e054-b09928988b3c
  3. G. S. Yu & C. M. Yeo. (2021). Smart Agriculture. Korea Institute of Science and Technology Planning and Evaluation. Retrieved from http://www.foodsecurity.or.kr/bbs/download.php?&bbs_id=qnaa04&page=3&type=1&doc_num=308
  4. Y. C. Choi & I. H. Jang. (2019). Smart Farm in the 4th Industrial Revolution Era. Information & Communications Magazine, 36(3), 9-16. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07993379
  5. Y. H. F. Yeh, T. C. Lai, T. Y. Liu, C. C. Liu, W. C. Chung, & T. T. Lin. (2014). An automated growth measurement system for leafy vegetables. Biosystems Engineering, 117, 43-50. DOI: 10.1016/j.biosystemseng.2013.08.011
  6. M. S. Kim, S. W. Jee, M. K. Kim, & Y. C. Cho. (2018). A Study on the Control System of Plant Growth Using IT Convergence Technology. Institute of Korean Electrical and Electronics Engineers, 22(4), 959-964. DOI: 10.7471/ikeee.2018.22.4.959
  7. N. K. Joo. (2021). Development of Solid Culture Medium, Bed and Growing Environment Management System for Ginseng Sprout Based on IoT. Journal of the Korea Institute of Information and Communication Engineering, 25(9), 1254-1262. DOI: 10.6109/jkiice.2021.25.9.1254
  8. B. C. Kim. (2016). The ICT convergence agriculture automated machines designed for smart agriculture. Journal of digital convergence, 14(2), 141-148. DOI: 10.14400/JDC.2016.14.2.141
  9. G. H. Lee. (2019). Trends and prospects for future agricultural technology. Retrieved from https://www.ibric.org/bric/trend/bio-report.do?mode=view&articleNo=8692539
  10. S. G. Sul, Y. T. Baek, Y, & Y. Cho. (2022). Effects of Light Intensity, Light Quality and Photoperiod for Growth of Perilla in a Closed-type Plant Factory System. Journal of Bio-Environment Control, 31(3), 180-187. DOI: 10.12791/KSBEC.2022.31.3.180
  11. S. G. Lee, J. S. Lee, & J. H. Won. (2020). Effects of Lettuce Cultivation Using Optical Fiber in Closed Plant Factory. Protected Horticulture and Plant Factory, 29(2), 105-109. DOI: 10.12791/KSBEC.2020.29.2.105
  12. J. S. Shin & J. Y. Hong. (2020). Simultaneous Heating and Cooling Multi-Air Conditioning System for Agricultural Products Management. The Journal of The Institute of Internet, Broadcasting and Communication, 20(6), 65-70. DOI: 10.7236/JIIBC.2020.20.6.65
  13. J. H. Ko & H. C. Kim. (2019). PLC Automatic Control for IOT Based Hydroponic Plant Factory. Journal of Institute of Korean Electrical and Electronics Engineers, 23(2), 487-494. DOI: 10.7471/ikeee.2019.23.2.487
  14. S. Vorapatratorn. (2021). Development of Automatic Plant Factory Control Systems with AI-Based Artificial Lighting. in Proceeding of the 13th International Conference on Information Technology and Electrical Engineering, 69-73. DOI: 10.1109/ICITEE53064.2021.9611820
  15. J. H. Bang, J. Park, S. W. Park, J. Y. Kim, S. H. Jung & C. B. Sim. (2022). A System for Determining the Growth Stage of Fruit Tree Using a Deep Learning-Based Object Detection Model. Smart media journal, 11(4), 9-18. DOI: 10.30693/SMJ.2022.11.4.9
  16. BISSOL LED. What is LED for plant growth? Retrieved from https://bissolled.com/page.php?menu=0102