DOI QR코드

DOI QR Code

Development of Life Cycle Carbon Emission Analysis for optimal low-carbon design of water distribution system

상수관망 저탄소 최적 설계를 위한 Life Cycle Carbon Emission Analysis의 개발

  • Ryu, Yong Min (Department of Civil Engineering, Chungbuk National University) ;
  • Lee, Eui Hoon (School of Civil Engineering, Chungbuk National University)
  • 류용민 (충북대학교 토목공학과) ;
  • 이의훈 (충북대학교 토목공학부)
  • Received : 2024.08.09
  • Accepted : 2024.10.02
  • Published : 2024.10.31

Abstract

Water distribution systems are important large-scale social infrastructure facilities for maintaining human society. Large-scale social infrastructure facilities are increasing due to urbanization and industrialization. However, one of the problems caused by the progress of urbanization and industrialization is carbon dioxide (CO2) emissions. In this study, a Life Cycle Carbon Emission Analysis (LCCEA) model was proposed to analyze the amount of CO2 generated during the life cycle of water distribution systems, such as installation, maintenance, and repair. Based on the proposed LCCEA model, low-carbon optimal design was performed and compared with cost-optimal design. As a result of applying the LCCEA model to domestic and international water distribution systems, the low-carbon optimal design showed a decrease in total and annual CO2 emissions compared to the cost-optimal design. In addition, when CO2 emissions were converted to costs and compared, the low-carbon optimal design showed better results in terms of cost. The LCCEA model can be applied to various water distribution systems as well as domestic and international water supply networks used in this study, and it will show good results in the design and operation of water distribution systems.

상수관망은 대규모 사회기반시설물로 인간사회를 유지하기 위한 중요한 시설물이다. 도시화 및 산업화로 인해 대규모 사회기반시설물은 증가하고 있다. 그러나, 도시화 및 산업화의 진행으로 인해 발생하는 문제 중 하나는 온실가스의 배출이다. 본 연구에서는 상수관망을 설치 및 유지·보수 등 상수관망의 생애주기동안 발생하는 이산화탄소(CO2)량을 분석하기 위해 Life Cycle Carbon Emission Analysis(LCCEA) 모델을 제안하였다. 제안된 LCCEA 모델을 기반으로 저탄소 최적설계를 진행하였으며, 이를 비용 최적설계와 비교하였다. 국내외 관망에 LCCEA 모델을 적용한 결과, 저탄소 최적설계안은 비용 최적설계안 대비 전체 및 연간 CO2 발생량이 감소하였다. 또한, CO2 배출량을 비용으로 환산하여 비교한 결과, 비용의 측면에서도 저탄소 최적설계안이 좋은 결과를 나타냈다. LCCEA 모델은 본 연구에서 적용한 국내외 관망뿐만이 아닌 다양한 관망에 적용할 경우, 상수관망 설계 및 운영에 좋은 결과를 나타낼 수 있을 것이다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 한국환경산업기술원의 도시홍수시설의 계획, 운영, 유지관리 최적화 기술개발사업의 지원을 받아 연구되었습니다(RS-2024-00398012).

References

  1. Alsabri, A., and Al-Ghamdi, S.G. (2020). "Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance." Energy Reports, Vol. 6, pp. 364-370.
  2. Alsadi, A.A., and Matthews, J.C. (2020). "Evaluation of carbon footprint of pipeline materials during installation, operation, and disposal phases." Journal of Pipeline Systems Engineering and Practice, Vol. 11, No. 2, 04020005.
  3. Baek, C.W. (2002). Development of optimal decision-making system for rehabilitation of water distribution systems using ReHS. Master Thesis, Korea University.
  4. Burat, F., Guney, A., and Kangal, M.O. (2009). "Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method." Waste Management, Vol. 29, No. 6, pp. 1807-1813.
  5. Chiplunkar, A.V. (1986). "Looped water distribution system optimization for single loading." Journal of Environmental Engineering, Vol. 112, No. 2, pp. 264-279.
  6. Cho, M.H., Jung, S.H., and Kim, J.S. (2010). "Pyrolysis of mixed plastic wastes for the recovery of benzene, toluene, and xylene (BTX) aromatics in a fluidized bed and chlorine removal by applying various additives." Energy & Fuels, Vol. 24, No. 2, pp. 1389-1395.
  7. Ditta, A.S., Wilkinson, A.J., McNally, G.M., and Murphy, W.R. (2004). "A study of the processing characteristics and mechanical properties of multiple recycled rigid PVC." Journal of Vinyl and Additive Technology, Vol. 10, No. 4, pp. 174-178.
  8. Filion, Y.R., MacLean, H.L., and Karney, B.W. (2004). "Life-cycle energy analysis of a water distribution system." Journal of Infrastructure Systems, Vol. 10, No. 3, pp. 120-130.
  9. Fu, G., Kapelan, Z., Kasprzyk, J.R., and Reed, P. (2013). "Optimal design of water distribution systems using many-objective visual analytics." Journal of Water Resources Planning and Management, Vol. 139, No. 6, pp. 624-633.
  10. Garcia, D., Balart, R., Crespo, J.E., and Lopez, J. (2006). "Mechanical properties of recycled PVC blends with styrenic polymers." Journal of Applied Polymer Science, Vol. 101, No. 4, pp. 2464-2471.
  11. Geem, Z.W., Kim, J.H., and Loganathan G.V. (2001). "A new heuristic optimization algorithm: harmony search." Simulation, Vol. 76, No. 2, pp. 60-68.
  12. Ito, M., and Nagai, K. (2007). "Degradation behavior and application of recycled PVC sheet made of floor sheet for railway vehicle." Polymer Degradation and Stability, Vol. 92, No. 9, pp. 1692-1699.
  13. Janajreh, I., Alshrah, M., and Zamzam, S. (2015). "Mechanical recycling of PVC plastic waste streams from cable industry: A case study." Sustainable Cities and Society, Vol. 18, pp. 13-20.
  14. Jayaram, N., and Srinivasan, K. (2008). "Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing." Water Resources Research, Vol. 44, No. 1.
  15. Jung, D., Kang, D., and Kim, J.H. (2018). "Development of a hybrid harmony search for water distribution system design." KSCE Journal of Civil Engineering, Vol. 22, No. 4, pp. 1506-1514.
  16. Kameda, T., Fukuda, Y., Grause, G., and Yoshioka, T. (2010). "Chemical modification of rigid poly (vinyl chloride) by the substitution with nucleophiles." Journal of Applied Polymer Science, Vol. 116, No. 1, pp. 36-44.
  17. Keane, M.A. (2007). "Catalytic conversion of waste plastics: Focus on waste PVC." Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, Vol. 82, No. 9, pp. 787-795.
  18. Keane, M.A. (2009). "Catalytic transformation of waste polymers to fuel oil." ChemSusChem: Chemistry & Sustainability Energy & Materials, Vol. 2, No. 3, pp. 207-214.
  19. Kleiner, Y., Adams, B.J., and Rogers, J.S. (1998). "Long-term planning methodology for water distribution system rehabilitation." Water Resources. Research, Vol. 34, No. 9, pp. 2039-2051.
  20. Kleiner, Y., and Rajani, B. (1999). "Using limited data to assess future needs." Journal-American Water Works Association, Vol. 91, No. 7, pp. 47-61.
  21. Lee, E.H. (2021) "Application of self-adaptive vision-correction algorithm for water-distribution problem." KSCE Journal of Civil Engineering, Vol. 25, No. 3, pp. 1106-1115.
  22. Lee, E.H., Lee, H.M., Yoo, D.G., and Kim, J.H. (2018). "Application of a meta-heuristic optimization algorithm motivated by a vision correction procedure for civil engineering problems." KSCE Journal of Civil Engineering, Vol. 22, No. 7, pp. 2623-2636.
  23. Lee, S.Y., Yoo, D.G., Jung, D.H., and Kim, J.H. (2015). "Optimal life cycle design of water pipe system using genetic algorithm." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 16, No. 6, pp. 4216-4227.
  24. Lundie, S., Peters, G.M., and Beavis, P.C. (2004). "Life cycle assessment for sustainable metropolitan water systems planning." Environmental Science & Technology, Vol. 38, No. 14, pp. 3465-3473.
  25. Ministry of Environment (ME) (2023). 2022 Waterworks Statistics.
  26. Mononobe, N. (1960). Hydraulics. Iwanami, Tokyo, Japan, pp. 155-158.
  27. Piratla, K.R., Ariaratnam, S.T., and Cohen, A. (2012). "Estimation of CO 2 emissions from the life cycle of a potable water pipeline project." Journal of Management in Engineering, Vol. 28, No. 1, pp. 22-30.
  28. Reca, J., Martinez, J., Gil, C., and Banos, R. (2008). "Application of several meta-heuristic techniques to the optimization of real looped water distribution networks." Water Resources Management, Vol. 22, No. 10, pp. 1367-1379.
  29. Recio, J.M.B., Guerrero, P.J., Ageitos, M.G., and Narvaez, R.P. (2005). Estimate of energy consumption and CO2 emission associated with the production, use and final disposal of PVC, HDPE, PP, ductile iron and concrete pipes. Universitat Politecnica de Catalunya, Barcelona, Spain, p. 13.
  30. Ryu, Y.M. and Lee, E.H. (2022). "Optimal design of water distribution system using modified hybrid vision correction algorithm." Journal of Korea Water Resources Association, Vol. 55, No. suppl 1, pp. 1271-1282.
  31. Ryu, Y.M., and Lee, E.H. (2023). "Application of modified hybrid vision correction algorithm for water distribution systems in civil engineering." KSCE Journal of Civil Engineering, Vol. 27, No. 8, pp. 3617-3631.
  32. Saldarriaga, J., Paez, D., Salcedo, C., Cuero, P., Lopez, L.L., Leon, N., and Celeita, D. (2020) "A direct approach for the near-optimal design of water distribution networks based on power use." Water, Vol. 12, No. 4, 1037.
  33. Sangroula, U., Han, K.H., Koo, K.M., Gnawali, K., and Yum, K.T. (2022). "Optimization of water distribution networks using genetic algorithm based SOP-WDN program." Water, Vol. 14, No. 6, 851.
  34. Shamir, U., and Howard, C.D., (1979). "An analytic approach to scheduling pipe replacement." Journal-American Water Works Association, Vol. 71, No. 5, pp. 248-258.
  35. Sharp, W.W., and Walski, T.M. (1988). "Predicting internal roughness in water mains." Journal-American Water Works Association, Vol. 80, No. 11, pp. 34-40.
  36. Shokoohi, M., Tabesh, M., Nazif, S., and Dini, M. (2017). "Water quality based multi-objective optimal design of water distribution systems." Water Resources Management, Vol. 31, pp. 93-108.
  37. U.S. Environmental Protection Agency (US EPA) (2000). EPANET 2.0 user's manual. Washington D.C., U.S.
  38. VinyPlus (2018). Belgium, accessed 1 August 2024, <www.vinyplus.eu>.
  39. Walski, T.M., and Pelliccia, A. (1982). "Economic analysis of water main breaks." Journal-American Water Works Association, Vol. 74, No. 3, pp. 140-147.
  40. Yoon, J,S.,, Yoo, D.G.,, Lee, H.M.,, and Kim, J.H. (2012). "Optimal leakage detection model of water distribution systems using semi-pressure driven analysis and harmony search." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 3, pp. 23-31.