DOI QR코드

DOI QR Code

Study on food sources of brown trout(Salmo trutta) and benthic macroinvertebrate community utilized as food sources

브라운송어(Salmo trutta)의 먹이원 분석과 먹이원으로 이용되는 저서성 대형무척추동물 군집에 대한 연구

  • Received : 2024.07.30
  • Accepted : 2024.09.24
  • Published : 2024.09.30

Abstract

Habitat environment and food sources of fish, benthic macroinvertebrates, and brown trout(Salmo trutta) downstream of Soyang River Dam were analyzed. Water temperature at the site where brown trout was identified ranged from approximately 12.4 to 13.4℃, confirming that this environment could provide an optimal water temperature for the growth of brown trout. Most of the riverbed structures at this site had a high proportion of cobble and pebble substrates. Brown trout constituted less than 5% of the total fish population, more abundant in the upstream. The total length-weight relationship of brown trout showed a parameter b value of 3.234, with the condition factor(K) increasing with length. Dominant benthic macroinvertebrates were Limnodrilus gotoi and Chironomidae spp. (non-red type). Stomach content analysis indicated that brown trout primarily consumed aquatic insects (R.A., 73.8%), non-insects (R.A., 23.3%), ground insects (R.A., 2.7%), and fish (R.A., 0.2%, TL: 246 mm). Correlation analysis revealed a positive relationship between total length and species preferring flowing water(p<0.05) and a negative relationship of total length with species favoring low-flow, sandy habitats (p<0.05). Larger brown trout showed active feeding behavior and resilience to flow speed and riverbed structure. The primary food source for the largest brown trout(TL: 246 mm) was Hypomesus nipponensis. Future analyses should include brown trout with a total length of 30 cm or more. Given that samples were limited, comprehensive population management will require ongoing research.

소양강댐 하류 일대에서 어류 및 저서성 대형무척추동물상, 브라운송어의 서식환경 및 먹이원 분석을 실시하였다. 브라운송어가 확인된 지점의 수온은 약 12.4~13.4℃의 범위로 나타나 브라운송어의 성장에 최적의 수온이 제공되는 서식환경으로 확인되었다. 하상구조는 대부분은 호박돌(Cobble), 자갈(Pebble) 기질의 비율이 높았다. 브라운송어의 상대풍부도는 전체 어류 중 5% 미만이었으며, 조사지점의 상류 구간에서 상대적으로 많이 분포하는 것으로 나타났다. 브라운송어의 전장-체중 관계 분석 결과 매개변수 b는 3.234로 산출되었고, 전장 대비 비만도 지수(K)는 증가하는 양상으로 나타났다. 저서성 대형무척추동물의 경우, 우점종은 실지렁이(L. gotoi), 아우점종은 깔따구류 spp.(non-red type)로 나타났다. 브라운송어 위 내용물의 먹이원 분석 결과 수서곤충류(R.A., 73.8%)와 비곤충류(R.A., 23.3%), 육상곤충류(R.A., 2.7%), 어류(R.A., 0.2%, TL: 246 mm)의 순으로 분석되었다. 브라운송어의 전장에 따른 먹이 섭식 패턴을 파악하기 위해 위 내용물에서 확인된 종들과의 상관분석을 실시한 결과, 브라운송어의 먹이원 중 유수성 환경 선호 종들의 경우 전장과 양의 상관관계(p<0.05)를 나타낸 반면, 모래 기질 이하의 흐름이 적은 서식처를 선호하는 종들의 경우 전장과 음의 상관관계(p<0.05)로 나타났다. 이는 전장이 큰 브라운송어의 경우 물리적 요인인 유속, 하상 구조 등에 대해 저항이 큼에 따라 적극적인 먹이 활동의 결과로 판단된다. 채집된 브라운송어 중 가장 큰 개체(TL 246 mm)의 먹이원은 빙어인 것으로 확인된 바, 향후 전장 30 cm 이상의 브라운송어를 포함한 먹이원 분석이 필요할 것으로 보이고, 먹이원에 대한 표본수가 크지 않아 향후 지속적인 연구를 통해 전반적인 개체군 관리가 이루어져야 할 것으로 사료된다.

Keywords

Acknowledgement

본 연구성과는 국립생태원의 생태계교란 생물 모니터링 사업(NIE-A-2024-09)의 지원을 받아 수행되었습니다.

References

  1. Ahlbeck I, S Hansson and O Hjerne. 2012. Evaluating fish diet analysis methods by individual-based modelling. Can. J. Fish. Aquat. Sci. 69:1184-1201. https://doi.org/10.1139/f2012-051 
  2. Allan JD. 1978. Diet of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta L.) in an alpine stream. Verh. Int. Ver. Limnol. 26:2045-2050. https://doi.org/10.1080/03680770.1977.11896815 
  3. Anderson RO and RM Neumann. 1996. Length, weight and associated structural indices. pp. 447-482. In: Fisheries Techniques (Murphy BR and DW Willis, eds.). 2nd ed. Am. Fish. Soc. Bethesda, MD, USA. 
  4. Anderson RO and SJ Gutreuter. 1983. Length, weight and associated structural indices. pp. 283-300. In: Fisheries Techniques (Nielsen LA and D Johnson, eds.). 1st ed. Am. Fish. Soc. Bethesda, MD, USA. 
  5. Arslan M, A Yildirim and S Bektas. 2004. Length-weight relationship of brown trout, Salmo trutta L., inhabiting Kan stream, Coruh Basin, north-eastern Turkey. Turk. J. Fish. Aquat. Sci. 4:45-48. 
  6. Baek SH, SH Park and JH Kim. 2020. Estimation of standard length-weight relationships of 10 freshwater fish in the South Korea for application of relative weight index. Korean J. Ichthyol. 32:55-62. https://doi.org/10.35399/ISK.32.2.3 
  7. Baxter CV, KD Fausch and WC Saunders. 2005. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50:201-220. https://doi.org/10.1111/j.1365-2427.2004.01328.x 
  8. Belica L. 2007. Brown Trout (Salmo trutta): A Technical Conservation Assessment. USDA Forest Service, Rocky Mountain Region. Lakewood, CO, USA. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5209386.pdf. Accessed September 23, 2024. 
  9. Brodeur RD and WG Pearcy. 1992. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol. Prog. Ser. 84:101-119. 
  10. Cada GF, JM Loar and DK Cox. 1987. Food and feeding preferences of rainbow and brown trout in Southern Appalachian Streams. Am. Midl. Nat. 117:374-385. https://doi.org/10.2307/2425980 
  11. Chae BS, HB Song, JY Park, KH Jo, SJ Jo and IS Kim. 2019. A Field Guide to the Freshwater Fishs of Korea. LG Evergreen Foundation. 
  12. Crowl TA, CR Townsend and AR Mclntosh. 1992. The impact of introduced brown and rainbow trout on native fish: The case of Australasia. Rev. Fish. Biol. Fish. 2:217-241. https://doi.org/10.1007/BF00045038 
  13. Cunjak RA and G Power. 1986. Winter habitat utilization by stream resident brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 43:1970-1981. https://doi.org/10.1139/f86-242 
  14. Elliott JM. 1967. The food of trout (Salmo trutta) in a Dartmoor Stream. J. Appl. Ecol. 4:59-71. 
  15. Elliott JM. 1975. The growth rate of brown trout(Salmo trutta L.) fed on reduced rations. J. Anim. Ecol. 44:823-842. 
  16. Gabrielsen SE. 1999. Effects of fish-farm activity on the limnetic community structure of brown trout, Salmo trutta, and Arctic charr, Salvelinus alpinus. Environ. Biol. Fishes 55:321-332. https://doi.org/10.1023/A:1007519631384 
  17. Han JH, CS Park, JW An, KG An and WG Baek. 2015. A Guide Book of Freshwater Fishes. 1st ed. Natl. Sci. Mus. Daejeon, Korea. 
  18. Hasegawa K. 2020. Invasion of rainbow trout and brown trout in Japan: A comparison of invasiveness and impact on native species. Ecol. Freshw. Fish 29:419-428. https://doi.org/10.1111/eff.12534 
  19. Haury J, D Ombredane and JL Bagliniere. 1999. The habitat of the brwon trout (Salmo trutta L.) in water courses. pp. 37-89. In: Biology and Ecology of the Brown Trout and Sea Trout (Bagliniere JL and G Maisse, eds.). SSpringer. London, UK. https://doi.org/10.1007/978-1-4471-0775-0_2 
  20. Hur JW, SY Park, SU Kang and JK Kim. 2009. Physical habitat assessment of pale chub (Zacco platypus) to stream orders in the Geum River Basin. Korean J. Environ. Biol. 27:397-405. 
  21. Jonsson B. 1989. Life history and habitat use of Norwegian brown trout (Salmo trutta). Freshw. Biol. 21:71-86. https://doi.org/10.1111/j.1365-2427.1989.tb01349.x 
  22. Jung KS. 2011. Odonata Larvae of Korea. Nature and Ecology. Seoul, Korea. p. 399. 
  23. Kaeding LR and CM Kaya. 1978. Growth and diets of trout from contrasting environments in a geothermally heated stream: The Firehole River of Yellowstone National Park. Trans. Am. Fish. Soc. 107:432-438. https://doi.org/10.1577/1548-8659(1978)107<432:GADOTF>2.0.CO;2 
  24. Kheyrandish A, A Abdoli, H Mostafavi, H Niksirat, M Naderi and S Vatandoost. 2010. Age and growth of brown trout (Salmo trutta) in six rivers of the Southern part of Caspian Basin. Am. J. Anim. Vet. Sci. 5:8-12. 
  25. Kim IS, Y Choi, CL Lee, YJ Lee, BJ Kim and JH Kim. 2005. Illustrated Book of Korean Fishes. 1st ed. Kyohak Publishing. Seoul, Korea.
  26. Kim JH, DP Hong, JJ Kim, BJ Kim, HK Kim and JS Choi. 2023. Length-weight relationship and condition factor of the invasive fish species brown trout(Salmo trutta) in Soyang River. J. Agri. Life Environ. Sci. 35:604-617. https://doi.org/10.22698/jales.20230049 
  27. Kim MC, SP Chun and JK Lee. 2013. Invertebrates in Korean Freshwater Ecosystems. Geobook. Seoul, Korea. p. 483.
  28. Korsu K, A Huusko and T Muotka. 2010. Impacts of invasive stream salmonids on native fish: using meta-analysis to summarize four decades of research. Boreal Environ. Res. 15:491-500. 
  29. Kwon SJ, YC Jun and JH Park. 2013. Benthic Macroinvertebrates. Nature and Ecology. Seoul, Korea. p. 791. 
  30. Le Cren CD. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in Perch, Perca fluviatilis. J. Anim. Ecol. 20:201-219. https://doi.org/10.2307/1540 
  31. Lee DY, DS Lee, CW Park, SJ Yun, JH Lim and YS Park. 2021. Comparison of benthic macroinvertebrate communities at two headwater streams located with different temperature regions in South Korea. Korean J. Environ. Ecol. 54:87-95. https://doi.org/10.11614/KSL.2021.54.2.087 
  32. Lenat DR. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. North Am. Benthol. Soc. 7:222-233. 
  33. Litvaitis JA. 2000. Investigating food habits of terrestrial vertebrates. pp. 165-190. In: Research Techniques in Animal Ecology: Controversies and Consequences (Boitani L and TK Fuller, eds.). Columbia Univ. Press. New York, USA. 
  34. Lowe S, M Browne, S Boudjelas and M de Poorter. 2000. 100 of the World's Worst Invasive Alien species. A Selection from the Global Invasive Species Database. Invasive Species Specialist Group a Specialist Group of the Species Survival Commission of the World Conservation Union. p. 12. 
  35. Maia CFQ and ACN Valente. 1999. The brown trout Salmo trutta L. populations in the river Lima catchment. Limnetica 17:119-126. 
  36. Martling S, G Simpson, JL Kientz, AJ Rosburg and ME Barnes. 2020. Brown trout spawn timing, redd locations, and stream characteristics in Spearfish Creek within Spearfish, South Dakota, USA. Open J. Ecol. 10:177-188. https://doi.org/10.4236/oje.2020.104012 
  37. Merrit RW, JR Wallace, MJ Higgins, MK Alexander, MB Berg, WT Morgan, KW Cummins and B Vandeneeden. 1996. Procedures for the functional analysis of invertebrate communities of the Kissimmee River-floodplain ecosystem. Fla. Sci. 59:216-274. 
  38. Nakano S and M Murakami. 2001. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Natl. Acad. Sci. 98:166-170. https://doi.org/10.1073/pnas.98.1.166 
  39. NIE. 2020. 2020 Investigating Ecological Risk of Alien Species. National Institute of Ecology. Seocheon, Korea. p. 182. 
  40. NIE. 2022. Invasive Alien Species in Korea. National Institute of Ecology. Seocheon, Korea. p. 183. 
  41. Park CW, YJ Yun, JW Kim, DY Bae, JG Kim and SH Kim. 2022. An identification of domestic habitat and settlement of the invasive exotic fish brown trout, Salmo trutta. Korean J. Ichthyol. 34:270-276. https://doi.org/10.35399/ISK.34.4.6 
  42. Peter EJ and PC Gerard. 2017. The introduction of brown trout to New Zealand and their impact on native fish communities. pp. 545-567. In: Brown Trout: Biology, Ecology and Management (Lobon-Cervia J and S Nuria, eds.). Wiley. Hoboken, NJ, USA. https://doi.org/10.1002/9781119268352.ch21 
  43. Raleigh RF, LD Zuckerman and PC Nelson. 1986. Habitat Suitability Index Models and Instream Flow Suitability Curves: Brown Trout. Fish and Wildlife Service, U.S. Department of the Interior. Washington, DC, USA. p. 65. 
  44. Rawat MS, B Bantwan, D Singh and OP Gusain. 2014. Length-weight relationship and condition factor of brown trout (Salmo trutta fario L.) from River Asiganga, Uttarakhand (India). Env. Conserv. J. 15:41-46. https://doi.org/10.36953/ECJ.2014.15306 
  45. Reiser DW and TA Wesche. 1977. Determination of Physical and Hydraulic Preferences Brown and Brook Trout in the Selection of Spawning Locations. Water Resour. Ser. No. 64. Water Resour. Res. Inst., University of Wyoming. Laramie, WY, USA. 
  46. Sigler WF. 1952. Age and growth of the brown trout, Salmo trutta fario Linnaeus, in Logan River, Utah. Trans. Am. Fish. Soc. 81:171-178. https://doi.org/10.1577/1548-8659(1951)81[171:AAGOTB]2.0.CO;2 
  47. Syrjanen J, M Kiljunen, J Karjalainen, A Eloranta and T Muotka. 2008. Survival and growth of brown trout Salmo trutta L. embryos and the timing of hatching and emergence in two boreal lake outlet streams. J. Fish Biol. 72:985-1000. https://doi.org/10.1111/j.1095-8649.2007.01779.x 
  48. Tebo LB and WW Hassler. 1963. Food of brook, brown, and rainbow trout from streams in western north Carolina. J. Elisha Mitchell Sci. Soc. 79:44-53. 
  49. Townsend CR. 1996. Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Biol. Conserv. 78:13-22. https://doi.org/10.1016/0006-3207(96)00014-6 
  50. Vornanen M, J Haverinen and S Egginton. 2014. Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario). J. Exp. Biol. 217:299-309. https://doi.org/10.1242/jeb.091272 
  51. Ward JV. 1992. Aquatic Insect Ecology. 1. Biology and Habitat. New York, USA. p. 438. 
  52. Wesche TA, CM Goertler and WA Hubert. 1987. Modified habitat suitability index model for brown trout in southeastern Wyoming. North Am. J. Fish Manege. 7:232-237. https://doi.org/10.1577/1548-8659(1987)7<232:MHSIMF>2.0.CO;2 
  53. Williams DD and BW Feltmate. 1992. Aquatic Insects. Commonwealth Agricultural Bureaux International. Oxford, UK. p. 358. 
  54. Won DH, SJ Kwon and YC Jun. 2005. Aquatic Insect of Korea. Korea Ecosystem Service Press. Seoul, Korea. p. 415. 
  55. Wootton RJ. 2012. Ecology of Teleost Fishes. Chapman and Hall. New York, USA. 
  56. Yoon IB, DS Kong and JK Ryu. 1992. Studies on the biological evaluation of water quality by benthic macroinvertebrates I. Saprobic valency and indicative value. Korean J. Environ. Biol. 10:24-39. 
  57. Yoon IB. 1988. Illustrated Encyclopedia of Fauna & Flora of Korea. Vol. 30. Aquatic Insects. Ministry of Education. Seoul, Korea. p. 840. 
  58. Yoon IB. 1995. Aquatic Insects of Korea. Junghaengsa. Seoul, Korea. p. 262. 
  59. Young MK. 1995. Telemetry-determined diurnal positions of brown trout (Salmo trutta) in two south-central Wyoming streams. Am. Midl. Nat. 133:264-273. https://doi.org/10.2307/2426390 
  60. Zaidel PA, AH Roy, KM Houle, B Lambert, BH Letcher, KH Nis-low and C Smith. 2021. Impact of small dams on stream temperature. Ecol. Indic. 120:16878. https://doi.org/10.1016/j.ecolind.2020.106878