DOI QR코드

DOI QR Code

Assessment of phosphine susceptibility and genetic analysis of dld and cyt-b5-r expression and mutations in Korean Tribolium castaneum

국내 거짓쌀도둑거저리의 포스핀 감수성 평가 및 포스핀 저항성 관련 유전자인 dld와 cyt-b5-r의 발현량과 점 돌연변이 분석

  • Donghyeon Kim (Department of Applied Biosciences, Kyungpook National University) ;
  • Jinuk Yang (Department of Integrative Biology, Kyungpook National University) ;
  • Junyeong Park (Department of Integrative Biology, Kyungpook National University) ;
  • Bongsu Kim (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency(APQA)) ;
  • Jun-Ran Kim (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency(APQA)) ;
  • Sung-Eun Lee (Department of Applied Biosciences, Kyungpook National University)
  • 김동현 (경북대학교 응용생명과학과) ;
  • 양진욱 (경북대학교 농생명융합공학과) ;
  • 박준영 (경북대학교 농생명융합공학과) ;
  • 김봉수 (농림축산검역본부 식물검역기술개발센터) ;
  • 김준란 (농림축산검역본부 식물검역기술개발센터) ;
  • 이성은 (경북대학교 응용생명과학과)
  • Received : 2024.08.09
  • Accepted : 2024.09.23
  • Published : 2024.09.30

Abstract

Phosphine (PH3) fumigation has been widely used for controlling storedgrain insect pests, causing the development of resistance of stored-grain insect pests to phosphine. PH3 resistance in Sitophilus oryzae has been reported in Korea. However, PH3 resistance in Tribolium castaneum has not been reported yet. This study was conducted to determine susceptibilities of T. castaneum collected from five different domestic locations to PH3. The susceptibility to PH3 was investigated using the FAO fumigation method. All domestic T. castaneum individuals were controlled by PH3 at 0.04 g m-3 . At 0.01 g m-3, T. castaneum collected from two domestic locations did not exhibit 100% mortality. A P45S point mutation in dihydrolipoamide dehydrogenase (dld) gene was found in a PH3-resistant strain of T. castaneum (Aus07), but not in five domestic stains or a PH3-susceptible strain (Aus10). No significant difference was found in dld or cyt-b5-r gene expression across all tested strains. However, the Gyeongju-collected strain of T. castaneum showed more than a 1.7-fold increase in cyt-b5-r expression compared to the Aus07 strain. cDNA sequence analysis revealed that P45S (C133T) in the dld gene was only present in Aus07. A characteristic single nucleotide polymorphism in the cyt-b5-r gene sequence was identified in the five domestic strains. This study suggests that it is necessary to continuously monitor PH3-susceptibility of T. castaneum in Korea to quickly identify resistant individuals and prevent the spread of PH3 resistance through rapid control.

포스핀(PH3) 훈증은 저곡해충을 방제하기 위해 널리 사용되어 왔으며, 이러한 높은 의존도에 의해 저곡해충에서 포스핀에 대한 저항성이 유발되었다. 국내에서는 쌀바구미에서 포스핀 저항성이 보고된 바 있으나, 거짓쌀도둑거저리에서는 포스핀 저항성이 보고된 바 없다. 본 연구는 국내 다섯 지역에서 채집한 거짓쌀도둑거저리를 이용하여 포스핀에 대한 감수성을 평가하기 위해 수행되었다. 포스핀에 대한 감수성은 FAO 훈증법을 통해 조사하였으며, 실험에 사용한 모든 국내 거짓쌀도둑거저리 개체는 0.04 g m-3 농도의 포스핀에서 사멸되었다. 0.01 g m-3 농도의 포스핀에서는 국내 두 지역에서 채집한 거짓쌀도둑거저리에서 100%의 사멸이 이루어지지 않았다. dihydrolipoamide dehydrogenase (dld) 유전자의 P45S 점돌연변이는 포스핀 저항성 거짓쌀도둑거저리 계통(Aus07)에서 확인되었으나, 포스핀 감수성 거짓쌀도둑거저리 계통(Aus10)과 국내 다섯 지역에서 채집한 거짓쌀도둑거저리에서는 확인되지 않았다. dld 유전자와 사이토크롬 b5 환원효소(cyt-b5-r) 유전자의 발현량을 비교한 결과, 모든 시험 종에서 유의미한 차이가 발견되지 않았다. 그러나 cyt-b5-r 유전자의 경우에, Aus07에서 발현량이 감소한 것에 비해서 경주 채집 종에서 1.7배 이상 발현량이 높은 것을 확인하였다. 또한, cDNA 염기서열을 분석한 결과, dld 유전자 염기서열의 P45S (C133T)는 Aus07에서만 확인되었으며, 국내 5개 채집 지역의 거짓쌀도둑거저리 종에서는 cyt-b5-r 유전자 염기서열에서 특징적인 염기서열다형성이 확인되었다. 이번 연구는 국내 거짓쌀도둑거저리의 포스핀 감수성을 지속적으로 모니터링하여 저항성 개체를 신속하게 확인하고, 신속한 방제를 통해 포스핀 저항성 확산을 방지할 필요가 있음을 시사한다.

Keywords

Acknowledgement

본 연구는 농림축산검역본부 학술연구용역과제(과제번호 Z-1543086-2023-25-02) 연구비를 지원받아 수행되었습니다.

References

  1. Abbasi E, Z Yazdani, S Daliri and MD Moemenbellah-Fard. 2023. Organochlorine knockdown-resistance (kdr) association in housefly (Musca domestica): A systematic review and meta-analysis. Para. Epidemiol. Control 22: e00310. https://doi.org/10.1016/j.parepi.2023.e00310
  2. Alzahrani SM and PR Ebert. 2023. Pesticidal toxicity of phosphine and its interaction with other pest control treatments. Curr. Issues Mol. Biol. 45:2461-2473. https://doi.org/10.3390/cimb45030161
  3. Bulathsinghala AT and IC Shaw. 2014. The toxic chemistry of methyl bromide. Hum. Exp. Toxicol. 33:81-91. https://doi.org/10.1177/0960327113493299
  4. Chadda IC. 2016. Fumigation with phosphine: A perspective. Indian J. Entomol. 78:39-45. https://doi.org/10.5958/0974-8172.2016.00023.7
  5. Chen Z, D Schlipalius, G Opit, B Subramanyam and TW Phillips. 2015. Diagnostic molecular mmarkers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica. PLoS One 10: e0121343. https://doi.org/10.1371/journal.pone.0121343
  6. Choi H, MK Park, PJ Fraser, S Geum, J Muhle, J Kim, I Porter, PK Salameh, CM Harth, BL Dunse, PB Krummel, RF Weiss, S O'Doherty, D Young and S Park. 2022. Top-down and bottom-up estimates of anthropogenic methyl bromide emissions from eastern China. Atmos. Chem. Phys. 22:5157-5173. https://doi.org/10.5194/acp-22-5157-2022
  7. Collins P. 2009. Strategy to Manage Resistance to Phosphine in the Australian Grain Industry. Cooperative Research Centre for National Plant Biosecurity. Bruce, Australian Capital Territory, Australia. https://www.graintrade.org.au/sites/default/files/file/NWPGP/Phosphine%20Resistance%20Strategy.pdf. Accessed July 26, 2024.
  8. Daglish GJ, MK Nayak, FH Arthur and CG Athanassiou. 2018. Insect pest management in stored grain. pp. 45-63. In: Recent Advances in Stored Product Protection (Athanassiou C and F Arthur, eds.). Springer. Berlin and Heidelberg, Germany. https://doi.org/10.1007/978-3-662-56125-6_3
  9. David SR, NS Sawal, MNSB Bin Hamzah and R Rajabalaya. 2018. The blood blues: A review on methemoglobinemia. J. Pharmacol. Pharmacother 9:1-5. https://doi.org/10.4103/jpp.JPP_79_17
  10. Drummond JB and RB Chapman. 2019. A comparison of two methods to determine the susceptibility of sawtoothed grain beetle (Oryzaephilus surinamensis) populations to pirimiphos-methyl from Canterbury, New Zealand. N. Z. Plant Prot. 72:245-252. https://doi.org/10.30843/nzpp.2019.72.308
  11. Elahian F, Z Sepehrizadeh, B Moghimi and SA Mirzaei. 2014. Human cytochrome b5 reductase: Structure, function, and potential applications. Crit. Rev. Biotechnol. 34:134-143. https://doi.org/10.3109/07388551.2012.732031
  12. Esther M, M Sharon, CVK Abirami and K Alagusundaram. 2014. Grain storage management in India. J. Postharvest Technol. 2:12-14.
  13. Fang C, JE Hopkinson, J Balzer, M Frese, WT Tay and T Walsh. 2022. Screening for insecticide resistance in Australian field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) using bioassays and DNA sequencing. Pest Manag. Sci. 78:3248-3259. https://doi.org/10.1002/ps.6906
  14. FAO. 1975. Recommended Methods for the Detection and Measurement of Resistance of Agricultural Pests to Pesticides. Tentative Method for Adults of Some Major Pest Species of Stored Cereals with Methyl Bromide and Phosphine. Food and Agriculture Organization of the United Nations Method No. 16. FAO Plant Prot. Bull. 23:12-25.
  15. Fardisi M, AD Gondhalekar, AR Ashbrook and ME Scharf. 2019. Rapid evolutionary responses to insecticide resistance management interventions by the German cockroach (Blattella germanica L.). Sci. Rep. 9:8292. https://doi.org/10.1038/s41598-019-44296-y
  16. Hubhachen Z, H Jiang, D Schlipalius, Y Park, RNC Guedes, B Oppert, G Opit and TW Phillips. 2020. A CAPS marker for determination of strong phosphine resistance in Tribolium castaneum from Brazil. J. Pest. Sci. 93:127-134. https://doi.org/10.1007/s10340-019-01134-4
  17. Kaur R, M Subbarayalu, R Jagadeesan, GJ Daglish, MK Nayak, HR Naik, S Ramasamy, C Subramanian, PR Ebert and DI Schlipalius. 2015. Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Heredity 115:188-194. https://doi.org/10.1038/hdy.2015.24
  18. Kim B, JE Song, JS Park, Y Park, EM Shin and J Yang. 2019a. Insecticidal effects of fumigants (EF, MB, and PH3) towards phosphine-susceptible and -resistant Sitophilus oryzae (Coleoptera: Curculionidae). Insects 10:327. https://doi.org/10.3390/insects10100327
  19. Kim D, K Kim, YH Lee and SE Lee. 2023. Transcriptome and Micro-CT analysis unravels the cuticle modification in phosphine-resistant stored grain insect pest, Tribolium castaneum (Herbst). Chem. Biol. Technol. Agric. 10:88. https://doi.org/10.1186/s40538-023-00466-9
  20. Kim K, JO Yang, JY Sung, JY Lee, JS Park, HS Lee, BH Lee, Y Ren, DW Lee and SE Lee. 2019b. Minimization of energy transduction confers resistance to phosphine in the rice weevil, Sitophilus oryzae. Sci. Rep. 9:14605. https://doi.org/10.1038/s41598-019-50972-w
  21. Kocak E, D Schlipalius, R Kaur, A Tuck, P Ebert, P Collins and A Yilmaz. 2015. Determining phosphine resistance in rust red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) populations from Turkey. Turk. Entomol. Derg. 39:129-136. https://doi.org/10.16970/ted.17464
  22. Kushnareva Y, AN Murphy and A Andreyev. 2002. Complex I-mediated reactive oxygen species generation: Modulation by cytochrome c and NAD (P)+ oxidation-reduction state. Biochem. J. 368:545-553. https://doi.org/10.1042/BJ20021121
  23. Lee SE and EM Lees. 2001. Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl. J. Econ. Entomol. 94:706-713. https://doi.org/10.1603/0022-0493-94.3.706
  24. Livak KJ and TD Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta CT) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  25. Machuca-Mesa LM, LM Turchen and RNC Guedes. 2023. Phosphine resistance among stored product insect pests: A global meta-analysis-based perspective. J. Pest Sci. 97:1485-1498. https://doi.org/10.1007/s10340-023-01713-6
  26. Menozzi P, MA Shi, A Lougarre, ZH Tang and D Fournier. 2004. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Ecol. Evol. 4:4. https://doi.org/10.1186/1471-2148-4-4
  27. Nath NS, I Bhattacharya, AG Tuck, DI Schlipalius and PR Ebert. 2011. Mechanisms of phosphine toxicity. J. Toxicol. 2011:494168-494177. https://doi.org/10.1155/2011/494168
  28. Nayak MK, R Jagadeesan, VT Singarayan, NS Nath, H Pavic, B Demboski, GJ Daglish, DI Schlipalius and PR Ebert. 2021. First report of strong phosphine resistance in stored grain insects in a far northern tropical region of Australia, combining conventional and genetic diagnostics. J. Stored Prod. Res. 92:101813. https://doi.org/10.1016/j.jspr.2021.101813
  29. Opit GP, TW Phillips, MJ Aikins and MM Hasan. 2012. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 105:1107-1114. https://doi.org/10.1603/ec12064
  30. Park MG, J Choi, YS Hong, CG Park, BG Kim, SY Lee, HJ Lim, HH Mo, E Lim and W Cha. 2020. Negative effect of methyl bromide fumigation work on the central nervous system. PLoS One 15:e0236694. https://doi.org/10.1371/journal.pone.0236694
  31. Plumier BM, M Schramm and DE Maier. 2018. Developing and verifying a fumigant loss model for bulk stored grain to predict phosphine concentrations by taking into account fumigant leakage and sorption. J. Stored Prod. Res. 77:197-204. https://doi.org/10.1016/j.jspr.2018.05.006
  32. Price NR. 1985. The mode of action of fumigants. J. Stored Prod. Res. 21:157-164. https://doi.org/10.1016/0022-474X(85)90010-4
  33. Said PP and RC Pardhan. 2014. Food Grain Storage Practices-A Review. J. Grain Process. Storage 1:1-5.
  34. Schlipalius DI, Q Cheng, PE Reilly, PJ Collins and PR Ebert. 2002. Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics 161:773-782. https://doi.org/10.1093/genetics/161.2.773
  35. Shen X, M Che, H Xu, X Zhuang, E Chen, P Tang and K Wang. 2023. Insight into the molecular mechanism of phosphine toxicity provided by functional analysis of cytochrome b5 fatty acid desaturase and dihydrolipoamide dehydrogenase in the red flour beetle, Tribolium castaneum. Pest. Biochem. Physiol. 194:105482. https://doi.org/10.1016/j.pestbp.2023.105482
  36. Siddiqui JA, R Fan, H Naz, BS Bamisile, M Hafeez, MI Ghani, Y Wei, Y Xu and X Chen. 2023. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front. Physiol. 13:1112278. https://doi.org/10.3389/fphys.2022.1112278
  37. Singh S, SM Nebapure, S Taria, D Sagar and S Subramanian. 2023. Current status of phosphine resistance in Indian field populations of Tribolium castaneum and its influence on antioxidant enzyme activities. Sci. Rep. 13:16497. https://doi.org/10.1038/s41598-023-43681-y
  38. Tahara EB, MH Barros, GA Oliveira, LE Netto and AJ Kowaltowski. 2007. Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging. FASEB J. 21:274-283. https://doi.org/10.1096/fj.06-6686com
  39. Tandonnet S, GA Cardoso, P Mariano-Martins, RD Monfardini, VA Cunha, RA de Carvalho and TT Torres. 2020. Molecular basis of resistance to organophosphate insecticides in the New World screw-worm fly. Parasites Vectors 13:562. https://doi.org/10.1186/s13071-020-04433-3
  40. Valmorbida I, JD Hohenstein, BS Coates, JG Bevilaque, J Menger, EW Hodgson, RL Koch and ME O'Neal. 2022. Association of voltage-gated sodium channel mutations with field-evolved pyrethroid resistant phenotypes in soybean aphid and genetic markers for their detection. Sci. Rep. 12:12020. https://doi.org/10.1038/s41598-022-16366-1
  41. Williams P, G Hepworth, F Goubran, M Muhunthan and K Dunn. 2000. Phosphine as a replacement for methyl bromide for postharvest disinfestation of citrus. Postharvest Biol. Technol. 19:193-199. https://doi.org/10.1016/S0925-5214(00)00093-4
  42. Wang Q, C Luo and R Wang. 2023. Insecticide resistance and its management in two invasive cryptic species of Bemisia tabaci in China. Int. J. Mol. Sci. 24:6048. https://doi.org/10.3390/ijms24076048
  43. Zettler LJ and GW Cuperus. 1990. Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. J. Econ. Entomol. 83:1677-1681. https://doi.org/10.1093/jee/83.5.1677
  44. Zolfaghari M, Y Xiao, FM Safiul Azam, F Yin, ZK Peng and ZY Li. 2024. Resistance mechanism of Plutella xylostella (L.) associated with amino acid substitutions in acetylcholinesterase-1: Insights from homology modeling, docking and molecular dynamic simulation. Insects 15:144. https://doi.org/10.3390/insects15030144