과제정보
본 논문은 농촌진흥청 연구사업(과제번호: RS-2021-RD012471) "배나무 화상병 발생지 격리시설에서의 화상병 수체내 전이경로와 방제 효과 구명"의 지원에 의해 이루어진 것임.
참고문헌
- Billing E. 2011. Fire blight. Why do views on host invasion by Erwinia amylovora differ? Plant Pathol. 60:178-189. https://doi.org/10.1111/j.1365-3059.2010.02382.x
- Bonn WG and T van der Zwet. 2000. Distribution and economic importance of fire blight. pp. 37-53. In: Fire Blight: The Disease and its Causative Agent, Erwinia amylovora (Vanneste J, ed.). CAB International. Wallingford, UK. https://doi.org/10.1079/9780851992945.0037
- Christen D, S Schonmann, M Jermini, RJ Strasser and G Defago. 2007. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ. Expt. Bot. 60:504-514. https://doi.org/10.1016/j.envexpbot.2007.02.003
- Guisse B, A Srivastava and R Strasser. 1995. The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat stressed leaves. Arch. Sci. 48:147-160. https://doi.org/10.5169/SEALS740252
- Ham H, YK Lee, HG Kong, SJ Hong, KJ Lee, GR Oh, MH Lee and Yh Lee. 2020. Outbreak of fire blight of apple and Asian pear in 2015-2019 in Korea. Res. Plant Dis. 26:222-228. https://doi.org/10.5423/RPD.2020.26.4.222
- Ham HD, TS Kim, MH Lee, KB Park, JH An, DH Kang and TW Kim. 2018. The assessment of photochemical index of nursery seedlings of cucumber and tomato under drought stress. Korean J. Environ. Biol. 36:479-487. https://doi.org/10.11626/KJEB.2018.36.4.479
- Heyens K and R Valcke. 2006. Fluorescence imaging of the infection pattern of apple leaves with Erwinia amylovora. Acta Horticult. 704:69-74. https://doi.org/10.17660/ActaHortic.2006.704.7
- Kang HG, TS Kim, SH Park, TW Kim and SY Yoo. 2016. Photochemical index analysis on different shading level of garden plants. Korean J. Environ. Biol. 34:264-271. https://doi.org/10.11626/KJEB.2016.34.4.264
- Kim SH, SH Ryu, B Yun, KH Cho, SY Cho and JG Park. 2023. Pytotoxicity by continuous spraying of fruit fire blight disinfectant during growing season of apple and pear. Korean J. Plant Res. 36.1. 100-106. https://doi.org/10.7732/KJPR.2023.36.1.100
- Lee MS, I Lee, SK Kim, CS Oh and DH Park. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24:41-51. https://doi.org/10.5423/RPD.2018.24.1.41
- Li Y, J Liu, P Lv, J Mi and B Zhao. 2022. Silicon improves the photosynthetic performance of oat leaves infected with Puccinia graminis f. sp. avenae. Front. Plant Sci. 13:1037136. https://doi.org/10.3389/fpls.2022.1037136
- EPPO. 2013. PM 7/20 (2)* Erwinia amylovora. EPPO Bulletin. 43:21-45. https://doi.org/10.1111/epp.12019
- Oh SJ and SC Koh. 2005. Analysis of O-J-I-P transients from four subtropical plant species for screening of stress indicators under low temperature. J. Environ. Sci. 14:389-395. https://doi.org/10.5322/JES.2005.14.4.389
- Papageorgiou GC and Govindjee. 2004. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Springer. Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-3218-9
- Park DH, JG Yu, EJ Oh, KS Han, MC Yea, SJ Lee, IS Myung, HS Shim and CS Oh. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946. https://doi.org/10.1094/PDIS-11-15-1364-PDN
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. Accessed May 21, 2024.
- RDA. 2022. Fruit Tree Fire Blight Prediction Information System. Rural Development Administration. Jeonju, Korea. https://www.fireblight.org/mobile/index. Accessed April 3, 2023.
- Salehi Z, H Abdollahi and SM Miri. 2018. Chlorophyll fluorescence response in susceptible and tolerant pear cultivars to fire blight in active and inactive chloroplast conditions. Seed Plant Prod. J. 34:73-87. https://doi.org/10.22092/sppj.2018.118102
- Stirbet A and Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B-Biol. 104:236-257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
- Strasser RJ, M Tsimilli-Michael and A Srivastava. 2004. Analysis of the chlorophyll a fluorescence transient. pp. 321-362. In: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer. Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_12
- Vrancken K, M Holtappels, H Schoofs, T Deckers and R Valcke. 2013. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art. Microbiol. 159:823-832. https://doi.org/10.1099/mic.0.064881-0
- Wang X, W Yang, Y Yang, M Huang, Y Guo and Q Zhu. 2022. Application of chalorophyll a fluorescence in analysis and detection of bacterial wilt in tomato plants. J. ASABE 65:347-356. https://doi.org/10.13031/ja.14696
- Weng H, Y Liu, I Captoline, X Li, D Ye and R Wu. 2021. Citrus Huanglongbing detection based on polyphasic chlorophyll a fluorescence coupled with machine learning and model transfer in two citrus cultivars. Comput. Electron. Agric. 187:106289. https://doi.org/10.1016/j.compag.2021.106289
- Yoo SY, KC Eom, SH Park and TW Kim. 2012. Possibility of drought stress indexing by chlorophyll fluorescence imaging technique in red pepper(Capsicum annuum L.). Korean J. Soil Sci. Fert. 45:676-682. https://doi.org/10.7745/KJSSF.2012.45.5.676