DOI QR코드

DOI QR Code

Effect of Cr3+ Chemical Conversion Treatment and Polymer Coating on Corrosion Resistance of Galfan-Coated Carbon Steel

갈판 코팅된 탄소강의 부식 저항성에 미치는 Cr3+ 화성처리 및 폴리머 코팅의 영향

  • Koangyong Hyun (Division of Naval Officer Science, Mokpo National Maritime University) ;
  • Dong-Ho Shin (Graduate school, Mokpo national maritime university) ;
  • Hyun-Kyu Hwang (Graduate school, Mokpo national maritime university) ;
  • Seong-Jong Kim (Division of Marine System Engineering, Mokpo National Maritime University)
  • 현광룡 (국립목포해양대학교 해군사관학부) ;
  • 신동호 (국립목포해양대학교 대학원) ;
  • 황현규 (국립목포해양대학교 대학원) ;
  • 김성종 (국립목포해양대학교 기관시스템공학부)
  • Received : 2024.09.27
  • Accepted : 2024.10.15
  • Published : 2024.10.31

Abstract

In this study, corrosion properties of galfan-coated carbon steel were compared and analyzed after applying trivalent chromium chemical conversion treatment and polymer coating techniques. Potentiodynamic polarization and galvanostatic corrosion experiments were performed to compare corrosion resistance of galfan-coated carbon steel with different coatings. Results of the potentiodynamic polarization test demonstrated that the specimen treated with both trivalent chromium chemical conversion and polymer coating exhibited superior corrosion resistance to other specimens, showing the lowest corrosion current density of 0.058 µA/cm2. In contrast, the specimen coated only with galfan presented the highest corrosion current density of 0.118 µA/cm2, indicating the lowest corrosion resistance. These results were further validated through additional analyses, including galvanostatic corrosion experiment, 3D microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. Results of this investigation confirmed that trivalent chromium chemical conversion treatment along with polymer coatings could effectively enhance corrosion resistance of carbon steel, offering a promising and environmentally friendly anti-corrosion technology.

Keywords

References

  1. J. Shin, H. J. Kwon, H. Kim, and D. Lee, Atmospheric Corrosion Model of Carbon Steel Considering Relative Humidity, Chloride Deposition Rate, and Surface Particles, Corrosion Science and Technology, 23, 324 (2024). Doi: https://doi.org/10.14773/cst.2024.23.4.324 
  2. N. V. Mandich and D. L. Snyder, Electrodeposition of Chromium, p. 205, Wiley & Sons, New York (2011). Doi: https://doi.org/10.1002/9780470602638.ch7 
  3. J. M. Prabhakar, R. S. Varanasi, C. C. d. Silva, Saba, A. d. Vooys, A. Erbe, and M. Rohwerder, Chromium Coatings from Trivalent Chromium Plating Baths: Characterization and Cathodic Delamination Behaviour, Corrosion Science, 187, 109525 (2021). Doi: https://doi.org/10.1016/j.corsci.2021.109525 
  4. S. Yeo, J. H. Kim, and H. S. Yun, Effect of Pulse Current and Coating Thickness on the Microstructure and FCCI Resistance of Electroplated Chromium on HT9 Steel Cladding, Surface and Coatings Technology, 389, 125652 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.125652 
  5. M. H. Shahini, H. E. Mohammadloo, and B. Ramezanzadeh, Recent Advances in Steel Surface Treatment via Novel/Green Conversion Coatings for Anti-Corrosion Applications: a Review Study. Journal of Coatings Technology and Research, 19, 159 (2022). Doi: https://doi.org/10.1007/s11998-021-00466-0 
  6. O. Gharbi, S. Thomas, C. Smith, and N. Birbilis, Chromate Replacement: What Does the Future Hold?, Nature Partner Journals Materials degradation, 2, 12 (2018). Doi: https://doi.org/10.1038/s41529-018-0034-5 
  7. B. S. Liu, J. L. Li, , W. J. Guo, P. F. Xu, S. H. Zhang, and Y. Z. Zhang, Progress in Corrosion-Resistant Coatings on Surface of Low Alloy Steel, Journal of Iron and Steel Research International, 30, 193 (2023). Doi: https://doi.org/10.1007/s42243-022-00872-7 
  8. J. Leon, B. Ter-Ovanessian, B. Normand, H. Terryn, B. Ozkaya, M. Lekka, H. J. Grande, E. Garcia-Lecina, and J. M. Vega, Corrosion Resistance of Electroplated Coatings Based on Chromium Trivalent-Baths, Surface and Coatings Technology, 481, 130616 (2024). Doi: https://doi.org/10.1016/j.surfcoat.2024.130616 
  9. S. Hesamedini and A. Bund, Trivalent Chromium Conversion Coatings. Journal of Coatings Technology and Research, 16, 623 (2019). Doi: https://doi.org/10.1007/s11998-019-00210-9 
  10. T. T. H. Nguyen, N. P. Thi, T. L. Ba, V. U. Van, B. L. Duc, and T. A. Nguyen, Effects of Nano-SiO2 and Trivalent Chromium Conversion on Corrosion Resistance of NiZn-plated Steel: towards a Multilayer Coating for Steel Protection, Anti-Corrosion Methods and Materials, 70, 1 (2023). Doi: https://doi.org/10.1108/ACMM-08-2022-2691 
  11. G. Grundmeier, W. Schmidt, and M. Stratmann, Corrosion Protection by Organic Coatings: Electrochemical Mechanism and Novel Methods of Investigation, Electrochimica Acta, 45, 2515 (2000). Doi: https://doi.org/10.1016/S0013-4686(00)00348-0 
  12. J. Qi and W. Li, Conversion Coatings for Magnesium and its Alloys: Chromium-Based Conversion Coatings, p. 49, Springer, Boston (2022). Doi: https://doi.org/10.1007/978-3-030-89976-9_3 
  13. F. Peltier and D. Thierry, Review of Cr-Free Coatings for the Corrosion Protection of Aluminum Aerospace Alloys. Coatings, 12, 518 (2022). Doi: https://doi.org/10.3390/coatings12040518 
  14. Y. H. Kim, J. S. Park, and S. J. Kim, Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells, Corrosion Science and Technology, 22, 242 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.242 
  15. T. T. Thuy, T. A. Truc, and P. G. Vu, Incorporation of Montmorillonite/Silica Composite for the Corrosion Protection of an Epoxy Coating on a 2024 Aluminum Alloy Substrate, Corrosion Science and Technology, 22, 99 (2023). Doi: https://doi.org/10.14773/cst.2023.22.2.99 
  16. S. B. Jeon, J. W. Choi, B. K. Son, and I. Son, The Effects of Drying Temperature on Chromate Treatment for Electroplated Zinc, Journal of the Korean institute of surface engineering, 56, 289 (2023). Doi: https://doi.org/10.5695/JSSE.2023.56.5.289 
  17. N. Sato and G. Okamoto, Electrochemical Passivation of Metals, p. 193, Springer, Boston (1981). Doi: https://doi.org/10.1007/978-1-4757-4825-3_4 
  18. D. R. Raut and S. H. Poratkar, Study the Effect of Aluminum Variation on Hardness &Aluminum Loss in ZnAl Alloy, International Journal of Modern Engineering Research, 3, 884 (2013). Doi: https://api.semanticscholar.org/CorpusID:14443893 
  19. S. Shawki and Z. A. Hamid, Effect of Aluminium Content on the Coating Structure and Dross Formation in the Hot-dip Galvanizing Process, Surface and Interface Analysis, 35, 943 (2003). Doi: https://doi.org/10.1002/sia.1608 
  20. C. Lim, D. Lim, B. Ku, S. E. Shim, and S. -H. Baeck, Optimization of Electrochemical Variables of Pulse-Reverse Electroplating in Trivalent Chromium Bath to Enhance the Corrosion Resistance of Chromium Film, Korean Journal of Metals and Materials, 57, 641 (2019). Doi: http://dx.doi.org/10.3365/KJMM.2019.57.10.641 
  21. J. Garcia-Anton, R. M. Fernandez-Domene, R. SanchezTovar, C. Escriva-Cerdan, R. Leiva-Garcia, V. Garcia, and A. Urtiaga, Improvement of the Electrochemical Behaviour of Zn-electroplated Steel using Regenerated Cr (III) Passivation baths, Chemical Engineering Science, 111, 402 (2014). Doi: https://doi.org/10.1016/j.ces.2014.03.005 
  22. S. Ha, J. Eun, C. Choi, S. Cho, and S. Jeon, Fabrication of a Uuniform Chromate Conversion Coating on Zn alloy for Improved Corrosion Resistance in Humid Environment, Scientific Reports, 13, 14311 (2023). Doi: https://doi.org/10.1038/s41598-023-41629-w 
  23. J. E. Edy, H. N. McMurray, K. R. Lammers, and A. C. A. deVooys, Kinetics of Corrosion-driven Cathodic Disbondment on Organic Coated Trivalent Chromium Metal-oxide-carbide Coatings on Steel, Corrosion Science, 157, 51 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.04.037 
  24. B. Boelen, H. D. Hartog, and H. V. d. Weijde, Product Performance of Polymer Coated Packaging Steel, Study of the Mechanism of Defect Growth in Cans, Progress in Organic Coatings, 50, 40 (2004). Doi: https://doi.org/10.1016/j.porgcoat.2003.09.011