References
- A. Priyadarshi, W. Krzemien, G. Salloum-Abou-Jaoude, J. Broughton, K. Pericleous, D. Eskin, and I. Tzanakis, Effect of water temperature and induced acoustic pressure on cavitation erosion behaviour of aluminium alloys, Tribology International, 189, 108994 (2023). Doi: https://doi.org/10.1016/j.triboint.2023.108994
- M. Szkodo, A. Stanislawska, A. Komarov, and L. Bolewski, Effect of MAO coatings on cavitation erosion and tribological properties of 5056 and 7075 aluminum alloys, Wear, 203704, 474 (2021). Doi: https://doi.org/10.1016/j.wear.2021.203709
- J. Fahim, S. M. M. Hadavi, H. Ghayour, and S. A. Hassanzadeh Tabrizi, Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy, Wear, 424-425, 122 (2019). Doi: https://doi.org/10.1016/j.wear.2019.02.017
- A. Pola, L. Montesano, M. Tocci, and G. M. La Vecchia, Influence of ultrasound treatment on cavitation erosion resistance of AlSi7 alloy, Materials, 10, 256 (2017). Doi: https://doi.org/10.3390/ma10030256
- C. Si, W. Sun, Y. Tian, and J. Cai, Cavitation erosion resistance enhancement of the surface modified 2024T351 Al alloy by ultrasonic shot peening, Surface and Coatings Technology, 452, 129122 (2023). Doi: https://doi.org/10.1016/j.surfcoat.2022.129122
- Z. Tong, J. Jiao, W. Zhou, Y. Yang, L. Chen, H. Liu, Y. Sun, and X. Ren, Improvement in cavitation erosion resistance of AA5083 aluminium alloy by laser shock processing, Surface and Coatings Technology, 377, 124799 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.07.023
- L. Girelli, M. Tocci, L. Montesano, M. Gelfi, and A. Pola, Investigation of cavitation erosion resistance of AlSi10Mg alloy for additive manufacturing, Wear, 402-403, 124-136 (2018). Doi: https://doi.org/10.1016/j.wear.2018.02.018
- M. Hou, Z. Qin, D. Xia, and W. Hu, Cavitation erosion of metallic materials under multi-field and multi-phase action in marine environment, Equipment Environmental Engineering, 19, 75 (2022).
- J. Du and F. Chen, Cavitation dynamics and flow aggressiveness in ultrasonic cavitation erosion, International Journal of Mechanical Sciences, 204, 106545 (2021). Doi: https://doi.org/10.1016/j.ijmecsci.2021.106545
- A. K. Krella, Degradation and protection of materials from cavitation erosion: a review, Materials, 16, 2058 (2023). Doi: https://doi.org/10.3390/ma16052058
- H. Soyama and Y. Iga, Laser Cavitation Peening: A Review, Applied Sciences, 13, 6702 (2023). Doi: https://doi.org/10.3390/app13116702
- A. Abouel-Kasem, O. O. Osman, S. A. Karrab, and S. M. Ahmed, The limited role of pit formed by microjet in evolution of cavitation erosion in the incubation period, Journal of Tribology, 144, 041702 (2022). Doi: https://doi.org/10.1115/1.4051653
- M. Dular, T. Pozar, J. Zevnik, and R. Petkovsek, High speed observation of damage created by a collapse of a single cavitation bubble, Wear, 418-419, 13 (2019). Doi: https://doi.org/10.1016/j.wear.2018.11.004
- O. O. Osman, A. Abouel-Kasem, and S. M. Ahmed, Shock waves as dominant mechanism for cavitation damage, Journal of Tribology, 144, 062301 (2021). Doi: https://doi.org/10.1115/1.4052141
- S. L. Song, D. G. Li, D. R. Chen, and P. Liang, The role of Ti in cavitation erosion and corrosion behaviours of NAB alloy in 3.5% NaCl solution, Journal of Alloys and Compounds, 919, 165728 (2022). Doi: https://doi.org/10.1016/j.jallcom.2022.165728
- S. R. Gonzalez-Avila, D. M. Nguyen, S. Arunachalam, E. M. Domingues, H. Mishra, and C. D. Ohl, Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS), Science Advances, 6, eaax6192 (2020). Doi: https://doi.org/10.1126/sciadv.aax6192
- I. J. Jang, J. M. Jeon, K. T. Kim, Y. R. Yoo, and K. Y. Sik, Ultrasonic cavitation behavior and its degradation mechanism of epoxy coatings in 3.5% NaCl at 15 oC, Corrosion Science and Technology, 20, 26 (2021). Doi: https://doi.org/10.14773/cst.2021.20.1.26
- R. J. K. Wood, Tribology of thermal sprayed WC-Co coatings, International Journal of Refractory Metals and Hard Materials, 28, 82 (2010). Doi: https://doi.org/10.1016/j.ijrmhm.2009.07.011
- J. Basumatary and R. J. K. Wood, Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution, Wear, 367-377, 1286 (2017). Doi: https://doi.org/10.1016/j.wear.2017.01.047
- Q. N. Song, Y. Tong, N. Xu, S. Y. Sun, H. L. Li, Y. F. Bao, Y. F. Jiang, Z. B. Wang, and Y. X. Qiao, Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions, Wear, 450, 203258 (2020). Doi: https://doi.org/10.1016/j.wear.2020.203258
- Q. Luo, Q. Zhang, Z. B. Qin, Z. Wu, B. Shen, L. Liu, and W. B. Hu, The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy, Journal of Alloys and Compounds, 747, 861 (2018). Doi: https://doi.org/10.1016/j.jallcom.2018.03.103
- Z. Qin, L. Cao, Y. Deng, C. Zhong, W. Hu, and Z. Wu, Effect of oxide film on the cavitation erosion-corrosion behavior of nickel-aluminum bronze alloy, Corrosion, 76, 1136 (2020). Doi: https://doi.org/10.5006/3348
- K. T. Kim, H. Y. Chang, and Y. S. Kim, Electrochemical approach on the corrosion during the cavitation of additive manufactured commercially pure titanium, Corrosion Science and Technology, 17, 310 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.6.310
- L. Cao, Z. Qin, Y. Deng, C. Zhong, W. Hu, and Z. Wu, Effect of passive film on cavitation corrosion behavior of 316l stainless steel, International Journal of Electrochemical Science, 15, 628 (2020). Doi: https://doi.org/10.20964/2020.01.51
- J. Ma, G. Hou, H. Cao, Y. An, H. Zhou, J. Chen, and W. Duan, Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze?, Corrosion Science, 209, 110700 (2022). Doi: https://doi.org/10.1016/j.corsci.2022.110700
- M. H. Im, Cavitation characteristics on impeller materials of centrifugal pump for ship in sea water and fresh water, Corrosion Science and Technology, 10, 218 (2011). Doi: https://doi.org/10.14773/cst.2011.10.6.218
- L. Wang, J. Mao, C. Xue, H. Ge, G. Dong, Q. Zhang, and J. Yao, Cavitation-Erosion behavior of laser cladded Low-Carbon Cobalt-Based alloys on 17-4PH stainless steel, Optics & Laser Technology, 158, 108761 (2023). Doi: https://doi.org/10.1016/j.optlastec.2022.108761
- S. Hattor and T. Kitagawa, Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data, Wear, 269, 443 (2010). Doi: https://doi.org/10.1016/j.wear.2010.04.031
- J. Z. Liu, J. H. Chen, Z. R. Liu, and C. L. Wu, Fine precipitation scenarios of AlZnMg (Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg (Cu) alloys, Materials Characterization, 99, 277 (2015). Doi: https://doi.org/10.1016/j.matchar.2014.11.028
- J. Z. Liu, J. H. Chen, X. B. Yang, S. Ren, C. L. Wu, H. Y. Xu, and J. Zou, Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy, Scripta Materialia, 63, 1061 (2010). Doi: https://doi.org/10.1016/j.scriptamat.2010.08.001
- R. Arabi Jeshvaghani, H. R. Shahverdi, and S. M. M. Hadavi, Investigation of the age hardening and operative deformation mechanism of 7075 aluminum alloy under creep forming, Materials Science and Engineering A, 552, 172 (2012). Doi: https://doi.org/10.1016/j.msea.2012.05.027
- A. M. Cassell, J. D. Robson, X. Zhou, T. Hashimoto, and M. Besel, The direct observation of copper segregation at the broad faces of η' and η precipitates in AA7010 aluminium alloy, Materials Characterization, 163, 110232 (2019). Doi: https://doi.org/10.1016/j.matchar.2020.110232
- S. Bayraktar and A. P. Hekimoglu, Effect of zinc content and cutting tool coating on the machinability of the Al-(5-35) Zn alloys, Metals and Materials International, 26, 477 (2020). Doi: https://doi.org/10.1007/s12540-019-00582-y
- S. Hong, Y. Wu, J. Wu, Y. Zhang, Y. Zheng, J. Li, and J. Lin, Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines, Renewable Energy, 164, 1089 (2021). Doi: https://doi.org/10.1016/j.renene.2020.08.099
- Y. Wang, E. Hao, Y. An, J. Chen, and H. Zhou, Effects of microstructure and mechanical properties on cavitation erosion resistance of NiCrWMoCuCBFe coatings, Applied Surface Science, 547, 149125 (2021). Doi: https://doi.org/10.1016/j.apsusc.2021.149125
- C. L. Ko, Y. L. Kuo, S. H. Chen, S. Y. Chen, J. Y. Guo, and Y. J. Wang, Formation of aluminum composite passive film on magnesium alloy by integrating sputtering and anodic aluminum oxidation processes, Thin Solid Films, 709, 138151 (2020). Doi: https://doi.org/10.1016/j.tsf.2020.138151
- T. H. Muster and I. S. Cole, The protective nature of passivation films on zinc: surface charge, Corrosion Science, 46, 2319 (2004). Doi: https://doi.org/10.1016/j.corsci.2004.01.002
- F. Cao, G.-L. Song, and A. Atrens, Corrosion and passivation of magnesium alloys, Corrosion Science, 111, 835 (2016). Doi: https://doi.org/10.1016/j.corsci.2016.05.041
- P. Hashemifard Dehkordi, H. Moshtaghi, and M. Abbasvali, Effects of magnesium oxide and copper oxide nanoparticles on biofilm formation of Escherichia coli and Listeria monocytogenes, Nanotechnology, 34, 155102 (2023). Doi: https://doi.org/10.1088/1361-6528/acab6f
- H. Jin, Y. Sui, X. Yu, J. Feng, Y. Jiang, Q. Wang, and W. Sun, The crystallographic orientation dependent anisotropic corrosion behavior of aluminum in 3.5 wt% NaCl solution, Journal of Electroanalytical Chemistry, 946, 117746 (2023). Doi: https://doi.org/10.1016/j.jelechem.2023.117746
- S. Joshi, J. P. Franc, G. Ghigliotti, and M. Fivel, Bubble collapse induced cavitation erosion: Plastic strain and energy dissipation investigations, Journal of the Mechanics and Physics of Solids, 134, 103749 (2020). Doi: https://doi.org/10.1016/j.jmps.2019.103749
- D. S. Won, K.S. Jeon, Y.T. Kho, and J.H. Lee, Cavitation behavior of A5083 alloy by vibratory cavitation tester, Journal of the Corrosion Science Society of Korea, 23, 215 (1994). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00230400215
- W. Opare, C. Kang, X. Wei, H. Liu, and H. Wang, Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234, 1425 (2020). Doi: https://doi.org/10.1177/1350650119899547