DOI QR코드

DOI QR Code

Electrochemical and Cavitation-Erosion Properties in Natural Seawater of Cast Aluminum Alloys

주조용 알루미늄 합금의 천연해수 내 전기화학적 및 캐비테이션-침식 특성

  • Il-Cho Park (Division of Cadet Training, Mokpo National Maritime University) ;
  • Hyun-Kyu Hwang (Department of Marine Engineering, Graduate School, Mokpo Maritime University) ;
  • Dong-Ho Shin (Department of Marine Engineering, Graduate School, Mokpo Maritime University) ;
  • Seong-Jong Kim (Division of Marine Engineering, Mokpo Maritime University)
  • 박일초 (국립목포해양대학교 승선실습과정부) ;
  • 황현규 (국립목포해양대학교 기관시스템공학과) ;
  • 신동호 (국립목포해양대학교 기관시스템공학과) ;
  • 김성종 (국립목포해양대학교 기관시스템공학부)
  • Received : 2024.09.27
  • Accepted : 2024.10.06
  • Published : 2024.10.31

Abstract

This study investigated electrochemical and cavitation-erosion characteristics of three types of cast aluminum alloys in natural seawater. Electrochemical properties were evaluated by calculating corrosion potential and corrosion current density through a potentiodynamic polarization experiment in a static marine environment. Cavitation-erosion characteristics were determined by measuring surface roughness, maximum damage depth, weight loss and surface damage shape with experiment time. Indentation experiments revealed that surface hardness values of domestic products were higher than those of foreign products due to high contents of zinc, magnesium and copper. This is because zinc, magnesium and copper dissolved in the aluminum crystal lattice could transform the lattice structure. Due to increased surface hardness, domestic products showed the best cavitation-erosion resistance. However, their corrosion resistance were found to be relatively poor. This is due to formation of galvanic couples within the alloy when zinc, magnesium and copper are present in relatively high concentrations, which can accelerate corrosion.

Keywords

References

  1. A. Priyadarshi, W. Krzemien, G. Salloum-Abou-Jaoude, J. Broughton, K. Pericleous, D. Eskin, and I. Tzanakis, Effect of water temperature and induced acoustic pressure on cavitation erosion behaviour of aluminium alloys, Tribology International, 189, 108994 (2023). Doi: https://doi.org/10.1016/j.triboint.2023.108994
  2. M. Szkodo, A. Stanislawska, A. Komarov, and L. Bolewski, Effect of MAO coatings on cavitation erosion and tribological properties of 5056 and 7075 aluminum alloys, Wear, 203704, 474 (2021). Doi: https://doi.org/10.1016/j.wear.2021.203709
  3. J. Fahim, S. M. M. Hadavi, H. Ghayour, and S. A. Hassanzadeh Tabrizi, Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy, Wear, 424-425, 122 (2019). Doi: https://doi.org/10.1016/j.wear.2019.02.017
  4. A. Pola, L. Montesano, M. Tocci, and G. M. La Vecchia, Influence of ultrasound treatment on cavitation erosion resistance of AlSi7 alloy, Materials, 10, 256 (2017). Doi: https://doi.org/10.3390/ma10030256
  5. C. Si, W. Sun, Y. Tian, and J. Cai, Cavitation erosion resistance enhancement of the surface modified 2024T351 Al alloy by ultrasonic shot peening, Surface and Coatings Technology, 452, 129122 (2023). Doi: https://doi.org/10.1016/j.surfcoat.2022.129122
  6. Z. Tong, J. Jiao, W. Zhou, Y. Yang, L. Chen, H. Liu, Y. Sun, and X. Ren, Improvement in cavitation erosion resistance of AA5083 aluminium alloy by laser shock processing, Surface and Coatings Technology, 377, 124799 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2019.07.023
  7. L. Girelli, M. Tocci, L. Montesano, M. Gelfi, and A. Pola, Investigation of cavitation erosion resistance of AlSi10Mg alloy for additive manufacturing, Wear, 402-403, 124-136 (2018). Doi: https://doi.org/10.1016/j.wear.2018.02.018
  8. M. Hou, Z. Qin, D. Xia, and W. Hu, Cavitation erosion of metallic materials under multi-field and multi-phase action in marine environment, Equipment Environmental Engineering, 19, 75 (2022).
  9. J. Du and F. Chen, Cavitation dynamics and flow aggressiveness in ultrasonic cavitation erosion, International Journal of Mechanical Sciences, 204, 106545 (2021). Doi: https://doi.org/10.1016/j.ijmecsci.2021.106545
  10. A. K. Krella, Degradation and protection of materials from cavitation erosion: a review, Materials, 16, 2058 (2023). Doi: https://doi.org/10.3390/ma16052058
  11. H. Soyama and Y. Iga, Laser Cavitation Peening: A Review, Applied Sciences, 13, 6702 (2023). Doi: https://doi.org/10.3390/app13116702
  12. A. Abouel-Kasem, O. O. Osman, S. A. Karrab, and S. M. Ahmed, The limited role of pit formed by microjet in evolution of cavitation erosion in the incubation period, Journal of Tribology, 144, 041702 (2022). Doi: https://doi.org/10.1115/1.4051653
  13. M. Dular, T. Pozar, J. Zevnik, and R. Petkovsek, High speed observation of damage created by a collapse of a single cavitation bubble, Wear, 418-419, 13 (2019). Doi: https://doi.org/10.1016/j.wear.2018.11.004
  14. O. O. Osman, A. Abouel-Kasem, and S. M. Ahmed, Shock waves as dominant mechanism for cavitation damage, Journal of Tribology, 144, 062301 (2021). Doi: https://doi.org/10.1115/1.4052141
  15. S. L. Song, D. G. Li, D. R. Chen, and P. Liang, The role of Ti in cavitation erosion and corrosion behaviours of NAB alloy in 3.5% NaCl solution, Journal of Alloys and Compounds, 919, 165728 (2022). Doi: https://doi.org/10.1016/j.jallcom.2022.165728
  16. S. R. Gonzalez-Avila, D. M. Nguyen, S. Arunachalam, E. M. Domingues, H. Mishra, and C. D. Ohl, Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS), Science Advances, 6, eaax6192 (2020). Doi: https://doi.org/10.1126/sciadv.aax6192
  17. I. J. Jang, J. M. Jeon, K. T. Kim, Y. R. Yoo, and K. Y. Sik, Ultrasonic cavitation behavior and its degradation mechanism of epoxy coatings in 3.5% NaCl at 15 oC, Corrosion Science and Technology, 20, 26 (2021). Doi: https://doi.org/10.14773/cst.2021.20.1.26
  18. R. J. K. Wood, Tribology of thermal sprayed WC-Co coatings, International Journal of Refractory Metals and Hard Materials, 28, 82 (2010). Doi: https://doi.org/10.1016/j.ijrmhm.2009.07.011
  19. J. Basumatary and R. J. K. Wood, Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution, Wear, 367-377, 1286 (2017). Doi: https://doi.org/10.1016/j.wear.2017.01.047
  20. Q. N. Song, Y. Tong, N. Xu, S. Y. Sun, H. L. Li, Y. F. Bao, Y. F. Jiang, Z. B. Wang, and Y. X. Qiao, Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions, Wear, 450, 203258 (2020). Doi: https://doi.org/10.1016/j.wear.2020.203258
  21. Q. Luo, Q. Zhang, Z. B. Qin, Z. Wu, B. Shen, L. Liu, and W. B. Hu, The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy, Journal of Alloys and Compounds, 747, 861 (2018). Doi: https://doi.org/10.1016/j.jallcom.2018.03.103
  22. Z. Qin, L. Cao, Y. Deng, C. Zhong, W. Hu, and Z. Wu, Effect of oxide film on the cavitation erosion-corrosion behavior of nickel-aluminum bronze alloy, Corrosion, 76, 1136 (2020). Doi: https://doi.org/10.5006/3348
  23. K. T. Kim, H. Y. Chang, and Y. S. Kim, Electrochemical approach on the corrosion during the cavitation of additive manufactured commercially pure titanium, Corrosion Science and Technology, 17, 310 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.6.310
  24. L. Cao, Z. Qin, Y. Deng, C. Zhong, W. Hu, and Z. Wu, Effect of passive film on cavitation corrosion behavior of 316l stainless steel, International Journal of Electrochemical Science, 15, 628 (2020). Doi: https://doi.org/10.20964/2020.01.51
  25. J. Ma, G. Hou, H. Cao, Y. An, H. Zhou, J. Chen, and W. Duan, Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze?, Corrosion Science, 209, 110700 (2022). Doi: https://doi.org/10.1016/j.corsci.2022.110700
  26. M. H. Im, Cavitation characteristics on impeller materials of centrifugal pump for ship in sea water and fresh water, Corrosion Science and Technology, 10, 218 (2011). Doi: https://doi.org/10.14773/cst.2011.10.6.218
  27. L. Wang, J. Mao, C. Xue, H. Ge, G. Dong, Q. Zhang, and J. Yao, Cavitation-Erosion behavior of laser cladded Low-Carbon Cobalt-Based alloys on 17-4PH stainless steel, Optics & Laser Technology, 158, 108761 (2023). Doi: https://doi.org/10.1016/j.optlastec.2022.108761
  28. S. Hattor and T. Kitagawa, Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data, Wear, 269, 443 (2010). Doi: https://doi.org/10.1016/j.wear.2010.04.031
  29. J. Z. Liu, J. H. Chen, Z. R. Liu, and C. L. Wu, Fine precipitation scenarios of AlZnMg (Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg (Cu) alloys, Materials Characterization, 99, 277 (2015). Doi: https://doi.org/10.1016/j.matchar.2014.11.028
  30. J. Z. Liu, J. H. Chen, X. B. Yang, S. Ren, C. L. Wu, H. Y. Xu, and J. Zou, Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy, Scripta Materialia, 63, 1061 (2010). Doi: https://doi.org/10.1016/j.scriptamat.2010.08.001
  31. R. Arabi Jeshvaghani, H. R. Shahverdi, and S. M. M. Hadavi, Investigation of the age hardening and operative deformation mechanism of 7075 aluminum alloy under creep forming, Materials Science and Engineering A, 552, 172 (2012). Doi: https://doi.org/10.1016/j.msea.2012.05.027
  32. A. M. Cassell, J. D. Robson, X. Zhou, T. Hashimoto, and M. Besel, The direct observation of copper segregation at the broad faces of η' and η precipitates in AA7010 aluminium alloy, Materials Characterization, 163, 110232 (2019). Doi: https://doi.org/10.1016/j.matchar.2020.110232
  33. S. Bayraktar and A. P. Hekimoglu, Effect of zinc content and cutting tool coating on the machinability of the Al-(5-35) Zn alloys, Metals and Materials International, 26, 477 (2020). Doi: https://doi.org/10.1007/s12540-019-00582-y
  34. S. Hong, Y. Wu, J. Wu, Y. Zhang, Y. Zheng, J. Li, and J. Lin, Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines, Renewable Energy, 164, 1089 (2021). Doi: https://doi.org/10.1016/j.renene.2020.08.099
  35. Y. Wang, E. Hao, Y. An, J. Chen, and H. Zhou, Effects of microstructure and mechanical properties on cavitation erosion resistance of NiCrWMoCuCBFe coatings, Applied Surface Science, 547, 149125 (2021). Doi: https://doi.org/10.1016/j.apsusc.2021.149125
  36. C. L. Ko, Y. L. Kuo, S. H. Chen, S. Y. Chen, J. Y. Guo, and Y. J. Wang, Formation of aluminum composite passive film on magnesium alloy by integrating sputtering and anodic aluminum oxidation processes, Thin Solid Films, 709, 138151 (2020). Doi: https://doi.org/10.1016/j.tsf.2020.138151
  37. T. H. Muster and I. S. Cole, The protective nature of passivation films on zinc: surface charge, Corrosion Science, 46, 2319 (2004). Doi: https://doi.org/10.1016/j.corsci.2004.01.002
  38. F. Cao, G.-L. Song, and A. Atrens, Corrosion and passivation of magnesium alloys, Corrosion Science, 111, 835 (2016). Doi: https://doi.org/10.1016/j.corsci.2016.05.041
  39. P. Hashemifard Dehkordi, H. Moshtaghi, and M. Abbasvali, Effects of magnesium oxide and copper oxide nanoparticles on biofilm formation of Escherichia coli and Listeria monocytogenes, Nanotechnology, 34, 155102 (2023). Doi: https://doi.org/10.1088/1361-6528/acab6f
  40. H. Jin, Y. Sui, X. Yu, J. Feng, Y. Jiang, Q. Wang, and W. Sun, The crystallographic orientation dependent anisotropic corrosion behavior of aluminum in 3.5 wt% NaCl solution, Journal of Electroanalytical Chemistry, 946, 117746 (2023). Doi: https://doi.org/10.1016/j.jelechem.2023.117746
  41. S. Joshi, J. P. Franc, G. Ghigliotti, and M. Fivel, Bubble collapse induced cavitation erosion: Plastic strain and energy dissipation investigations, Journal of the Mechanics and Physics of Solids, 134, 103749 (2020). Doi: https://doi.org/10.1016/j.jmps.2019.103749
  42. D. S. Won, K.S. Jeon, Y.T. Kho, and J.H. Lee, Cavitation behavior of A5083 alloy by vibratory cavitation tester, Journal of the Corrosion Science Society of Korea, 23, 215 (1994). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00230400215
  43. W. Opare, C. Kang, X. Wei, H. Liu, and H. Wang, Comparative investigation of ultrasonic cavitation erosion for three materials in deionized water, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234, 1425 (2020). Doi: https://doi.org/10.1177/1350650119899547