References
- J. Shin, H. J. Kwon, H. Kim, and D. Lee, Atmospheric Corrosion Model of Carbon Steel Considering Relative Humidity, Chloride Deposition Rate, and Surface Particles, Corrosion Science and Technology, 23, 324 (2024). Doi: https://doi.org/10.14773/cst.2024.23.4.324
- N. V. Mandich and D. L. Snyder, Electrodeposition of Chromium, p. 205, Wiley & Sons, New York (2011). Doi: https://doi.org/10.1002/9780470602638.ch7
- J. M. Prabhakar, R. S. Varanasi, C. C. d. Silva, Saba, A. d. Vooys, A. Erbe, and M. Rohwerder, Chromium Coatings from Trivalent Chromium Plating Baths: Characterization and Cathodic Delamination Behaviour, Corrosion Science, 187, 109525 (2021). Doi: https://doi.org/10.1016/j.corsci.2021.109525
- S. Yeo, J. H. Kim, and H. S. Yun, Effect of Pulse Current and Coating Thickness on the Microstructure and FCCI Resistance of Electroplated Chromium on HT9 Steel Cladding, Surface and Coatings Technology, 389, 125652 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.125652
- M. H. Shahini, H. E. Mohammadloo, and B. Ramezanzadeh, Recent Advances in Steel Surface Treatment via Novel/Green Conversion Coatings for Anti-Corrosion Applications: a Review Study. Journal of Coatings Technology and Research, 19, 159 (2022). Doi: https://doi.org/10.1007/s11998-021-00466-0
- O. Gharbi, S. Thomas, C. Smith, and N. Birbilis, Chromate Replacement: What Does the Future Hold?, Nature Partner Journals Materials degradation, 2, 12 (2018). Doi: https://doi.org/10.1038/s41529-018-0034-5
- B. S. Liu, J. L. Li, , W. J. Guo, P. F. Xu, S. H. Zhang, and Y. Z. Zhang, Progress in Corrosion-Resistant Coatings on Surface of Low Alloy Steel, Journal of Iron and Steel Research International, 30, 193 (2023). Doi: https://doi.org/10.1007/s42243-022-00872-7
- J. Leon, B. Ter-Ovanessian, B. Normand, H. Terryn, B. Ozkaya, M. Lekka, H. J. Grande, E. Garcia-Lecina, and J. M. Vega, Corrosion Resistance of Electroplated Coatings Based on Chromium Trivalent-Baths, Surface and Coatings Technology, 481, 130616 (2024). Doi: https://doi.org/10.1016/j.surfcoat.2024.130616
- S. Hesamedini and A. Bund, Trivalent Chromium Conversion Coatings. Journal of Coatings Technology and Research, 16, 623 (2019). Doi: https://doi.org/10.1007/s11998-019-00210-9
- T. T. H. Nguyen, N. P. Thi, T. L. Ba, V. U. Van, B. L. Duc, and T. A. Nguyen, Effects of Nano-SiO2 and Trivalent Chromium Conversion on Corrosion Resistance of NiZn-plated Steel: towards a Multilayer Coating for Steel Protection, Anti-Corrosion Methods and Materials, 70, 1 (2023). Doi: https://doi.org/10.1108/ACMM-08-2022-2691
- G. Grundmeier, W. Schmidt, and M. Stratmann, Corrosion Protection by Organic Coatings: Electrochemical Mechanism and Novel Methods of Investigation, Electrochimica Acta, 45, 2515 (2000). Doi: https://doi.org/10.1016/S0013-4686(00)00348-0
- J. Qi and W. Li, Conversion Coatings for Magnesium and its Alloys: Chromium-Based Conversion Coatings, p. 49, Springer, Boston (2022). Doi: https://doi.org/10.1007/978-3-030-89976-9_3
- F. Peltier and D. Thierry, Review of Cr-Free Coatings for the Corrosion Protection of Aluminum Aerospace Alloys. Coatings, 12, 518 (2022). Doi: https://doi.org/10.3390/coatings12040518
- Y. H. Kim, J. S. Park, and S. J. Kim, Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells, Corrosion Science and Technology, 22, 242 (2023). Doi: https://doi.org/10.14773/cst.2023.22.4.242
- T. T. Thuy, T. A. Truc, and P. G. Vu, Incorporation of Montmorillonite/Silica Composite for the Corrosion Protection of an Epoxy Coating on a 2024 Aluminum Alloy Substrate, Corrosion Science and Technology, 22, 99 (2023). Doi: https://doi.org/10.14773/cst.2023.22.2.99
- S. B. Jeon, J. W. Choi, B. K. Son, and I. Son, The Effects of Drying Temperature on Chromate Treatment for Electroplated Zinc, Journal of the Korean institute of surface engineering, 56, 289 (2023). Doi: https://doi.org/10.5695/JSSE.2023.56.5.289
- N. Sato and G. Okamoto, Electrochemical Passivation of Metals, p. 193, Springer, Boston (1981). Doi: https://doi.org/10.1007/978-1-4757-4825-3_4
- D. R. Raut and S. H. Poratkar, Study the Effect of Aluminum Variation on Hardness &Aluminum Loss in ZnAl Alloy, International Journal of Modern Engineering Research, 3, 884 (2013). Doi: https://api.semanticscholar.org/CorpusID:14443893
- S. Shawki and Z. A. Hamid, Effect of Aluminium Content on the Coating Structure and Dross Formation in the Hot-dip Galvanizing Process, Surface and Interface Analysis, 35, 943 (2003). Doi: https://doi.org/10.1002/sia.1608
- C. Lim, D. Lim, B. Ku, S. E. Shim, and S. -H. Baeck, Optimization of Electrochemical Variables of Pulse-Reverse Electroplating in Trivalent Chromium Bath to Enhance the Corrosion Resistance of Chromium Film, Korean Journal of Metals and Materials, 57, 641 (2019). Doi: http://dx.doi.org/10.3365/KJMM.2019.57.10.641
- J. Garcia-Anton, R. M. Fernandez-Domene, R. SanchezTovar, C. Escriva-Cerdan, R. Leiva-Garcia, V. Garcia, and A. Urtiaga, Improvement of the Electrochemical Behaviour of Zn-electroplated Steel using Regenerated Cr (III) Passivation baths, Chemical Engineering Science, 111, 402 (2014). Doi: https://doi.org/10.1016/j.ces.2014.03.005
- S. Ha, J. Eun, C. Choi, S. Cho, and S. Jeon, Fabrication of a Uuniform Chromate Conversion Coating on Zn alloy for Improved Corrosion Resistance in Humid Environment, Scientific Reports, 13, 14311 (2023). Doi: https://doi.org/10.1038/s41598-023-41629-w
- J. E. Edy, H. N. McMurray, K. R. Lammers, and A. C. A. deVooys, Kinetics of Corrosion-driven Cathodic Disbondment on Organic Coated Trivalent Chromium Metal-oxide-carbide Coatings on Steel, Corrosion Science, 157, 51 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.04.037
- B. Boelen, H. D. Hartog, and H. V. d. Weijde, Product Performance of Polymer Coated Packaging Steel, Study of the Mechanism of Defect Growth in Cans, Progress in Organic Coatings, 50, 40 (2004). Doi: https://doi.org/10.1016/j.porgcoat.2003.09.011