DOI QR코드

DOI QR Code

Corrosion Behaviors of Ultra-high-strength Alloy Steel According to Heat Treatment Conditions

초고강도 합금강의 열처리 조건에 따른 부식거동

  • Eun Hye Hwang (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Min Jung Park (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Jin Sung Park (POSCO Technical Research Laboratories) ;
  • Sung Jin Kim (Department of Advanced Materials Engineering, Sunchon National University)
  • 황은혜 (순천대학교 신소재공학과) ;
  • 박민정 (순천대학교 신소재공학과) ;
  • 박진성 (POSCO 기술연구원) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2024.09.27
  • Accepted : 2024.10.06
  • Published : 2024.10.31

Abstract

This study aimed to examine effects of microstructural changes through quenching and tempering (QT) and quenching and partitioning (Q&P) heat treatments on corrosion behavior of ultra-high-strength alloy steel containing Cr, Mo, Ni, and Cu. Electrochemical methods including polarization and impedance spectroscopy along with microstructural characterization indicated that the conventional partitioning process could lead to formation of retained austenite with larger size in a martensitic matrix, resulting in a higher corrosion rate in saline environments. In contrast, a slightly higher partitioning temperature than marten-site transformation start temperature produced more finely distributed austenite in a bainitic matrix, exhibiting greater long-term corrosion resistance. This improvement was primarily attributed to the uniform distribution of Ni in the microstructure and the formation of Cr-enriched corrosion product with inhibiting properties in advanced stages of corrosion. These findings provide significant insights into alloying strategies to ensure superior long-term corrosion resistance of ultra-high-strength alloy steel in neutral aqueous environments.

Keywords

Acknowledgement

This research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255).

References

  1. J. Li, D. Zhan, Z. Jiang, H. Zhang, Y. Yang, and Y. Zhang, Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review, Journal of Materials Research and Technology, 23, 172 (2023). Doi: https://doi.org/10.1016/j.jmrt.2022.12.177
  2. J. Lee, J. Park, and D. Bae, Seawater corrosion resistance steel, Poseidon500, for port & offshore structures, Magazine of the Korean Society Steel Construction, 27, 40 (2015).
  3. KS D 3003, Corrosion resistance steel for port and offshore structures, Korean agency for technology and standards (2013).
  4. E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: https://doi.org/10.3365/KJMM.2018.56.8.570
  5. J. S. Park, H. G. Seong and S. J. Kim, Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications, Corrosion Science and Technology, 6, 267 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.267
  6. S. B. Bae and S. H. Kim, Influence of the material scattering on the springback tendency in the stamping process of the UHSS, Journal of the Korean Society for Precision Engineering, 35, 791 (2018). Doi: https://doi.org/10.7736/KSPE.2018.35.8.791
  7. J. G. Speer, E. De Moor, K. O. Findley, D. K. Matlock, B. C. De Cooman, and D. V. Edmonds, Analysis of microstructure evolution in quenching and partitioning automotive sheet steel, Metallurgical and Materials Transactions, 42A, 3591 (2011). Doi: https://doi.org/10.1007/s11661-011-0869-7
  8. D. V. Edmonds, K. He, F. C. Rizzo, B. C. De Cooman, D. K. Matlock, and J. G. Speer, Quenching and partitioning martensite-A novel steel heat treatment, Materials Science and Engineering A, 438, 25 (2006). Doi: https://doi.org/10.1016/j.msea.2006.02.133
  9. L. Wang, and J. G. Speer, Quenching and partitioning steel heat treatment, Metallography, Microstructure and Analysis, 2, 268 (2013). Doi: https://doi.org/10.1007/s13632-013-0082-8
  10. J. S. Park, S. W. Jin, S. J. Yun, G. B. Baek, J. S. Lee, S. G. Lee, and S. J. Kim, Optimizing microstructure of medium Ni-bearing steel to ensure high resistance to corrosion and corrosion-assisted mechanical degradation, npj Materials Degradation, (2024) under review.
  11. K. W. Andrews, Heat Treatment for Improvement in Low Temperature Mechanical Properties of 0.40 pct C-Cr Steels, The Journal of the Iron and Steel Institute, 203, 721 (1965).
  12. H. R. Bang, J. S. Park, H. G. Seong, and S. J. Kim, Effect of minor alloying elements (C, Ni, Cr, Mo) on the long-term corrosion behaviors of ultrahigh-strength automotive steel sheet in neutral aqueous environment, Korean Journal of Metals and Materials. 60, 35-45 (2022). Doi: http://dx.doi.org/10.3365/KJMM.2022.60.1.35
  13. M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, and H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mossbauer spectroscopy and with synchrotron radiation X-rays, Corrosion Science, 45, 381-394 (2003). Doi: https://doi.org/10.1016/S0010-938X(02)00093-8
  14. Y. J. Jeong, S. O. Kim, J. S. Park, J. W. Lee, J. K. Hwang, S. G. Lee, J. K. Choi, and S. J. Kim, Strong and ductile Fe-24Mn-3Cr alloy resistant against erosion-corrosion, npj Materials Degradation 5, 47 (2021). Doi: https://doi.org/10.1038/s41529-021-00195-0
  15. M. Qin, W. Xu, L. Yang, and Y. Li, Corrosion behavior of 9% Ni steel for LNG storage tanks in 3.5 wt% NaCl solution, International Journal of Electrochemical Science, 13, 6537-6549 (2018). Doi: https://doi.org/10.20964/2018.07.24
  16. S. B. Shin, S. J. Song, y. w. Shin, J. G. Kim, and B. J. Park, Effect of Molybdenum on the Corrosion of Low Alloy Steels in Synthetic Seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.2320/matertrans.M2016222