DOI QR코드

DOI QR Code

Dietary Mulberry leaf 1-deoxynijirimycin supplementation shortens villus height and improves intestinal barrier in fattening rabbits

  • Shaocong Li (Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology) ;
  • Tao Li (Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology) ;
  • Zijie Jiang (Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology) ;
  • Wenyu Hou (Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology) ;
  • Qirui Hou (Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology) ;
  • Boris Ramos Serrano (Plant Protein and Bionatural Products Research Center) ;
  • Adileidys Ruiz Barcenas (Plant Protein and Bionatural Products Research Center) ;
  • Yuhua Wang (Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology) ;
  • Weiguo Zhao (Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology)
  • 투고 : 2024.02.23
  • 심사 : 2024.05.20
  • 발행 : 2024.12.01

초록

Objective: The current study investigated the effects of mulberry 1-deoxynijirimycin (DNJ) on the digestion ability, intestinal morphology, and intestinal barrier of rabbits. Methods: A total of 36 New Zealand White rabbits (male) about 45 days old (mean body weight of 1.05±0.04 kg) were reared and commercial diets were employed, and afterwards divided into three groups (n = 12) with different levels of DNJ extract additive in feed: T0 (0 g/kg), T1 (0.35 g/kg), T2 (0.7 g/kg) for 28 d. Results: The results demonstrated that T2 decreased the average daily gain (p<0.05). T1 and T2 decreased villus height and inflammatory factor levels as compared with T0 (p<0.05). DNJ significantly decreased the content of valeric acid (p<0.05). The content of acetic acid, propionic acid, iso butyric acid, iso valeric acid in T1 were higher than those in T0 and T2 (p<0.05). The content of butyric acid in T2 was lower than it in T0 and T1 (p<0.05). The content of caproic acid was firstly improved then reduced as the DNJ concentration improved (p<0.05). T2 significantly increased the abundance of dgA-11_gut_group and Christensenellaceae_R-7_group while decreased Bacteroide and Ralstonia as compared with T0 (p<0.05). Compared with T0, T1, and T2 significantly improved the gene expression of JAM2, JAM3, mucin4, mucin6 (p<0.05), T1 significantly decreased the expression of occluding while T2 significantly increased (p<0.05), T2 significantly increased the expression of claudin1 and claudin2 (p<0.05). Conclusion: DNJ at high level changed microbiome compositions, inhibited inflammation, and improved intestinal barrier while it decreased the growth performance and shorted villus height in rabbit jejunum by regulating short chain fatty acid compositions in rabbits.

키워드

과제정보

This work was supported by the National Key R&D Program of China (2021YFE0111100), the Sericulture comprehensive technology integration position (CARS-18-ZJ0207), the Science and Technology Partnership Program, the Ministry of Science and Technology of China (KY202201002), Zhenjiang Science and Technology support project (GJ2021015), earmarked fund for CARS-18, the Key R&D Program of Guangxi (AB23026066), the Crop Germplasm Resources Protection Project of the Agriculture Ministry (111721301354052026), National Infrastructure for Crop Germplasm Resources (NICGR-43), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX22_1991).

참고문헌

  1. Kim SW, Less JF, Wang L, et al. Meeting global feed protein demand: challenge, opportunity, and strategy. Annu Rev Anim Biosci 2019;7:221-43. https://doi.org/10.1146/annurevanimal-030117-014838
  2. Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. Livestock: on our plates or eating at our table? a new analysis of the feed/food debate. Glob Food Sec 2017;14:1-8. https://doi.org/10.1016/j.gfs.2017.01.001
  3. Saddul D, Jelan ZA, Liang JB, Halim RA. The potential of mulberry (Morus alba) as a fodder crop: the effect of plant maturity on yield, persistence and nutrient composition of plant fractions. Asian-Australas J Anim Sci 2004;17:1657-62. https://doi.org/10.5713/ajas.2004.1657
  4. Ding Y, Jiang X, Yao X, et al. Effects of feeding fermented mulberry leaf powder on growth performance, slaughter performance, and meat quality in chicken broilers. Animals 2021;11:3294. https://doi.org/10.3390/ani11113294
  5. Fan L, Peng Y, Wu D, et al. Morus nigra L. leaves improve the meat quality in finishing pigs. J Anim Physiol Anim Nutr (Berl) 2020;104:1904-11. https://doi.org/10.1111/jpn.13439
  6. Martinez M, Motta W, Cervera C, Pla M. Feeding mulberry leaves to fattening rabbits: effects on growth, carcass characteristics and meat quality. Anim Sci 2005;80:275-80. https://doi.org/10.1079/ASC41110275
  7. Li YG, Ji DF, Zhong S, et al. 1-Deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Sci Rep 2013;3:1377. https://doi.org/10.1038/srep01377
  8. Samulitis BK, Goda T, Lee SM, Koldovsky O. Inhibitory mechanism of acarbose and 1-deoxynojirimycin derivatives on carbohydrases in rat small intestine. Drugs Exp Clin Res 1987;13:517-24.
  9. Jiang L, Zhang L, Yang J, et al. 1-Deoxynojirimycin attenuates septic cardiomyopathy by regulating oxidative stress, apoptosis, and inflammation via the JAK2/STAT6 signaling pathway. Biomed Pharmacother 2022;155:113648. https://doi.org/10.1016/j.biopha.2022.113648
  10. Piao X, Li S, Sui X, et al. 1-Deoxynojirimycin (DNJ) ameliorates indomethacin-induced gastric ulcer in mice by affecting NFkappaB signaling pathway. Front Pharmacol 2018;9:372. https://doi.org/10.3389/fphar.2018.00372
  11. Hu TG, Wen P, Shen WZ, et al. Effect of 1-deoxynojirimycin isolated from mulberry leaves on glucose metabolism and gut microbiota in a streptozotocin-induced diabetic mouse model. J Nat Prod 2019;82:2189-200. https://doi.org/10.1021/acs.jnatprod.9b00205
  12. Zheng J, Zhu L, Hu B, et al. 1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis. J Nutr Biochem 2019;71:16-26. https://doi.org/10.1016/j.jnutbio.2019.05.013
  13. Hou QR, Zhang J, Chen T, Zhao WG, Li L. Effects of dietary supplement of mulberry leaf (Morus alba) on growth and meat quality in rabbits. Indian J Anim Res 2020;54:317-21. https://doi.org/10.18805/ijar.B-1006
  14. Zhang DY, Wan Y, Hao JY, et al. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind Crops Prod 2018;122:298-307. https://doi.org/10.1016/j.indcrop.2018.05.065
  15. National Research Council. Nutrient requirements of rabbits. 2nd rev ed. Washington, DC, USA: The National Academies Press; 1977. https://doi.org/10.17226/35
  16. Perez J, Lebas F, Gidenne T, et al. European reference method for in vivo determination of diet digestibility in rabbits. World Rabbit Sci 1995;3:41-3. https://doi.org/10.4995/wrs.1995.239
  17. Nakyinsige K, Sazili AQ, Zulkifli I, Goh YM, Bakar FA, Sabow AB. Influence of gas stunning and halal slaughter (no stunning) on rabbits welfare indicators and meat quality. Meat Sci 2014;98:701-8. https://doi.org/10.1016/j.meatsci.2014.05.017
  18. AOAC. Official methods of analysis. AOAC. 15th ed. Arlington, VA, USA: AOAC Inc; 1990.
  19. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  20. Martin-Gallausiaux C, Marinelli L, Blottiere HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc 2021;80:37-49. https://doi.org/10.1017/s0029665120006916
  21. Habib H, Fazili KM. Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev 2007;2:68-85.
  22. Srivastava S, Kapoor R, Thathola A, Srivastava RP. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int J Food Sci Nutr 2006;57:305-13. https://doi.org/10.1080/09637480600801837
  23. Asano N, Yamashita T, Yasuda K, et al. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 2001;49:4208-13. https://doi.org/10.1021/jf010567e
  24. Yatsunami K, Ichida M, Onodera S. The relationship between 1-deoxynojirimycin content and alpha-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (Morus spp.) in Kyoto, Japan. J Nat Med 2008;62:63-6. https://doi.org/10.1007/s11418-007-0185-0
  25. Kim J, Yun EY, Quan FS, Park SW, Goo TW. Central administration of 1-deoxynojirimycin attenuates hypothalamic endoplasmic reticulum stress and regulates food intake and body weight in mice with high-fat diet-induced obesity. Evid Based Complement Alternat Med 2017;2017:3607089. https://doi.org/10.1155/2017/3607089
  26. Hou Q, Qian Z, Wu P, Shen M, Li L, Zhao W. 1-Deoxynojirimycin from mulberry leaves changes gut digestion and microbiota composition in geese. Poult Sci 2020;99:5858-66. https://doi.org/10.1016/j.psj.2020.07.048
  27. Ma B, Zhang L, Li J, Xing T, Jiana Y, Gao F. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult Sci 2021;100:215-23. https://doi.org/10.1016/j.psj.2020.09.090
  28. Remppis S, Steingass H, Gruber L, Schenkel H. Effects of energy intake on performance, mobilization and retention of body tissue, and metabolic parameters in dairy cows with special regard to effects of pre-partum nutrition on lactation-a review. Asian-Australas J Anim Sci 2011;24:540-72. https://doi.org/10.5713/ajas.2011.10134
  29. Song M, Wang C, Yu M, et al. Mulberry leaf extract improves intestinal barrier function and displays beneficial effects on colonic microbiota and microbial metabolism in weaned piglets. J Sci Food Agric 2023;103:1561-8. https://doi.org/10.1002/jsfa.12254
  30. Abdelqader A, Al-Fataftah AR. Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. Livest Sci 2016;183:78-83. https://doi.org/10.1016/j.livsci.2015.11.026
  31. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Immerseel FV. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010;23:366-84. https://doi.org/10.1017/s0954422410000247
  32. Reilly KJ, Frankel WL, Bain AM, Rombeau JL. Colonic short chain fatty acids mediate jejunal growth by increasing gastrin. Gut 1995;37:81-6. https://doi.org/10.1136/gut.37.1.81
  33. Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 2007;13:2826-32. https://doi.org/10.3748/wjg.v13.i20.2826
  34. Sun C, Tang X, Shao X, et al. Mulberry (Morus atropurpurea Roxb.) leaf protein hydrolysates ameliorate dextran sodium sulfate-induced colitis via integrated modulation of gut microbiota and immunity. J Funct Foods 2021;84:104575. https://doi.org/10.1016/j.jff.2021.104575
  35. Sun X, Shen J, Liu C, et al. L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community. Asian-Australas J Anim Sci 2020;33:166-76. https://doi.org/10.5713/ajas.18.0984
  36. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell 2014;159:789-99. https://doi.org/10.1016/j.cell.2014.09.053
  37. Wang X, Zhu L, Li X, Wang X, Hao R, Li J. Effects of high fructose corn syrup on intestinal microbiota structure and obesity in mice. NPJ Sci Food 2022;6:17. https://doi.org/10.1038/s41538-022-00133-7
  38. Mancabelli L, Milani C, Lugli GA, et al. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol 2017;93:fix153. https://doi.org/10.1093/femsec/fix153
  39. Bauerl C, Collado MC, Zuniga M, Blas E, Perez Martinez G. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One 2014;9:e105707. https://doi.org/10.1371/journal.pone.0105707
  40. Jin DX, Zou HW, Liu SQ, et al. The underlying microbial mechanism of epizootic rabbit enteropathy triggered by a low fiber diet. Sci Rep 2018;8:12489. https://doi.org/10.1038/s41598-018-30178-2
  41. Green HD, Bright-Thomas R, Kenna DT, Turton JF, Woodford N, Jones AM. Ralstonia infection in cystic fibrosis. Epidemiol Infect 2017;145:2864-72. https://doi.org/10.1017/s0950268817001728
  42. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta Biomembr 2008;1778:660-9. https://doi.org/10.1016/j.bbamem.2007.07.012
  43. Liu Y, Nusrat A, Schnell FJ, et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000;113:2363-74. https://doi.org/10.1242/jcs.113.13.2363
  44. Burgueno JF, Abreu MT. Epithelial toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020;17:263-78. https://doi.org/10.1038/s41575-019-0261-4