Acknowledgement
This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ0162182021)" Rural Development Administration, Republic of Korea.
References
- Lee SH, Park BH, Sharma A, et al. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol 2014;56:2. https://doi.org/10.1186/2055-0391-56-2
- Statistics Korea. Korean statistical information service (KOSIS) [Internet]. Daejeon, Korea: Statistics Korea; c2023 [cited 2024 Mar 1]. Available from: https://kosis.kr/index/index.do
- NIAS (National Institute of Animal Science). The materials related animal genetic improvement. Wanju, Korea: National Institute of Animal Science; 2017. pp. 166-202.
- Yeo JH, Lin QL. Economic impacts of selection and dissemination of Korean proven bulls. J Korea Acad Indust Coop Soc 2015;16:1101-8. https://doi.org/10.5762/KAIS.2015.16.2.1101
- Korea Institute of Animal Products Quality Evaluation (KAPE). Statistical yearbook for livestock product grade determination in 2022 [Internet]. Sejong, Korea: Korea Institute of Animal Products Quality Evaluation; c2023 [cited 2023 Sept 1]. Available from: https://www.ekape.or.kr/board/list.do?menuId=menu138629&nextUrl=
- Lee JJ, Choi SD, Dang CG, Kang SN, Kim NS. The effect of carcass traits on economic values in Hanwoo. Korean J Food Sci Anim Resour 2011; 31:603-8. https://doi.org/10.5851/kosfa.2011.31.4.603
- Park HR, Eum SH, Park JH, et al. Contribution analysis of carcass traits on auction price in Gyeongsangnam-do Hanwoo. J Agric Life Sci 2015;49:187-95. https://doi.org/10.14397/jals.2015.49.6.187
- Lee T, Cho S, Seo KS, Chang J, Kim H, Yoon D. Genetic variants and signatures of selective sweep of Hanwoo population (Korean native cattle). Korean Soc Biochem Mol Biol - BMB Rep 2013;46:346-51. https://doi.org/10.5483/bmbrep.2013.46.7.211
- Han JM. Kong HS. Identification of a SNP in cattle HGD gene with its effect on economic trait in Hanwoo. J Life Sci 2014;24:1168-73. https://doi.org/10.5352/JLS.2014.24.11.1168
- An NR, Lee SS, Park JE, Chai HH, Cho YM, Lim DJ. Current status of genomic prediction using Multi-omics data in livestock. J Biomed Transl Res 2017;18:151-6. https://doi.org/10.12729/jbtr.2017.18.4.151
- Lee SH, Lim D, Jang GW, et al. Genome wide association study to identity QTL for growth traits in Hanwoo. J Anim Sci Technol 2012;54:323-9. https://doi.org/10.5187/jast.2012.54.5.323
- Bhuiyan MSA, Lim D, Park M, et al. Functional partitioning of genomic variance and genome-wide association study for carcass traits in Korean Hanwoo cattle using imputed sequence level SNP data. Front Genet 2018;9:217. https://doi.org/10.3389/fgene.2018.00217
- Srikanth K, Lee SH, Chung KY, et al. A gene-set enrichment and protein-protein interaction network-based GWAS with regulatory SNPs identifies candidate genes and pathways associated with carcass traits in Hanwoo cattle. Genes 2020;11:316. https://doi.org/10.3390/genes11030316
- Connolly S, Heron EA. Review of statistical methodologies for the detection of parent-of-origin effects in family trio genome-wide association data with binary disease traits. Brief Bioinform 2015;16:429-48. https://doi.org/10.1093/bib/bbu017
- Howe LJ, Nivard MG, Morris TT, et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat Genet 2022;54:581-92. https://doi.org/10.1038/s41588-022-01062-7
- Brumpton B, Sanderson E, Heilbron K, et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat Commun 2020;11:3519. https://doi.org/10.1038/s41467-020-17117-4
- Ramayo-Caldas Y, Renand G, Ballester M, Saintilan R, Rocha D. Multi-breed and multi-trait co-association analysis of meat tenderness and other meat quality traits in three French beef cattle breeds. Genet Sel Evol 2016;48:37. https://doi.org/10.1186/s12711-016-0216-y
- Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2011;40:D109-14. https://doi.org/10.1093/nar/gkr988
- The Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res 2015;43:D1049-56. https://doi.org/10.1093/nar/gku1179
- dos Santos Silva DB, Fonseca LFS, Pinheiro DG, et al. Prediction of hub genes associated with intramuscular fat content in Nelore cattle. BMC Genomics 2019;20:520. https://doi.org/10.1186/s12864-019-5904-x
- Yuan F, Pan X, Chen L, Zhang YH, Huang T, Cai YD. Analysis of protein-protein functional associations by using gene ontology and KEGG pathway. Biomed Res Int 2019;2019:4963289. https://doi.org/10.1155/2019/4963289
- Purcell S, Neale B, Todd-Brown K, et al. Plink: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795
- Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 2012;44:821-4. https://doi.org/10.1038/ng.2310
- Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. Panther: making genome-scale phylogenetics accessible to all. Protein Sci 2022;31:8-22. https://doi.org/10.1002/pro.4218
- Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211
- Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022;50:W216-21. https://doi.org/10.1093/nar/gkac194
- Nwogwugwu CP, Kim Y, Chung YJ, et al. Effect of errors in pedigree on the accuracy of estimated breeding value for carcass traits in Korean Hanwoo cattle. Asian-Australas J Anim Sci 2020;33:1057-67. https://doi.org/10.5713/ajas.19.0021
- Alam M, Lee SH, Lee DH, Cho C, Park MN. Genetic analysis of major carcass traits of Korean Hanwoo males raised for thirty months. Animals 2021;11:1792. https://doi.org/10.3390/ani11061792
- Eu-Ahsunthornwattana J, Miller EN, Fakiola M, Wellcome Trust Case Control Consortium 2, Jeronimo SM, Blackwell JM, Cordell HJ. Comparison of methods to account for relatedness in genome-wide association studies with family-based data. PLoS Genet 2014;10:e1004445. https://doi.org/10.1371/journal.pgen.1004445
- Srikanth K, Lee SH, Chung KY, et al. A gene-set enrichment and protein-protein interaction network-based GWAS with regulatory SNPs identifies candidate genes and pathways associated with carcass traits in hanwoo cattle. Genes 2020;11:316. https://doi.org/10.3390/genes11030316
- Lee SH, Choi BH, Lim D, et al. Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean cattle). PLoS ONE 2013;8:e74677. https://doi.org/10.1371/journal.pone.0074677
- Nazar M, Abdalla IM, Chen Z, et al. genome-wide association study for udder conformation traits in Chinese Holstein cattle. Animals 2022;12:2542. https://doi.org/10.3390/ani12192542
- Li R, Li C, Chen H, et al. Genome-wide scan of selection signatures in Dehong humped cattle for heat tolerance and disease resistance. Anim Genet 2020;51:292-9. https://doi.org/10.1111/age.12896
- Rehfeldt C, Te Pas MFW, et al. Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. regulation of myogenesis and environmental impact. Animal 2011;5:703-17. https://doi.org/10.1017/S1751731110002089
- Zhang S, Knight TJ, Reecy JM, et al. Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylasealpha gene with beef fatty acid composition. Anim Genet 2010;41:417-20. https://doi.org/10.1111/j.1365-2052.2009.02006.x
- Shin SC, Heo JP, Chung ER. Effect of single nucleotide polymorphisms of acetyl-CoA carboxylase α (ACACA) gene on carcass traits in Hanwoo (Korean Cattle). Asian-Australas J Anim Sci 2011;24:744-51. https://doi.org/10.5713/ajas.2011.10396
- Du L, Li K, Chang T, et al. Integrating genomics and transcriptomics to identify candidate genes for subcutaneous fat deposition in beef cattle. Genomics 2022;114:110406. https://doi.org/10.1016/j.ygeno.2022.110406
- Santana MHA, Gomes RC, Utsunomiya YT, et al. Genome-wide association with residual body weight gain in Bos indicus cattle. Genet Mol Res 2015;14:5229-33. https://doi.org/10.4238/2015.May.18.14
- Cai C, Xu J, Huang Y, et al. Differential expression of ACTL8 gene and association study of its variations with growth traits in Chinese cattle. Animals 2019;9:1068. https://doi.org/10.3390/ani9121068
- Page G, Lodige I, Kogel D, Scheidtmann KH. AATF, a novel transcription factor that interacts with Dlk/ZIP kinase and interferes with apoptosis. FEBS Lett 1999;462:187-91. https://doi.org/10.1016/s0014-5793(99)01529-x
- Rodrigues RTdS, Chizzotti ML, Vital CE, et al. Differences in beef quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) cattle through a proteomic and phosphoproteomic approach. PLoS ONE 2017;12:e0170294. https://doi.org/10.1371/journal.pone.0170294
- He M, Wang C, Long XH, et al. Mesencephalic astrocytederived neurotrophic factor ameliorates steatosis in HepG2 cells by regulating hepatic lipid metabolism. World J Gastroenterol 2020;26:1029-41. https://doi.org/10.3748/wjg.v26.i10.1029
- Ruiz-Ojeda FJ, Aguilera CM, Ruperez AI, Gil A, Gomez-Llorente C. An analogue of atrial natriuretic peptide (CANP4-23) modulates glucose metabolism in human differentiated adipocytes. Mol Cell Endocrinol 2016;431:101-8. https://doi.org/10.1016/j.mce.2016.05.011
- Smith JH. Relation of body size to muscle cell size and number in the chicken. Poult Sci 1963;42:283-90. https://doi.org/10.3382/ps.0420283
- Mendoza MN, Raudsepp T, Alshanbari F, Gutierrez G, Ponce de Leon FA. Chromosomal localization of candidate genes for fiber growth and color in alpaca (Vicugna pacos). Front Genet 2019;10:583. https://doi.org/10.3389/fgene.2019.00583
- Santri IN, Irham LM, Djalilah GN, et al. Identification of hub genes and potential biomarkers for childhood asthma by utilizing an established bioinformatic analysis approach. Biomedicines 2022;10:2311. https://doi.org/10.3390/biomedicines10092311