DOI QR코드

DOI QR Code

Immunisation of the somatostatin gene alters hypothalamic-pituitary-liver gene expressions and enhances growth in Dazu black goats

  • Ge Qin (College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University) ;
  • Shiyong Fang (College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University) ;
  • Xianqing Song (College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University) ;
  • Li Zhang (College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University) ;
  • Jiazhuo Huang (College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University) ;
  • Yongfu Huang (College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University) ;
  • Yanguo Han (College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University)
  • 투고 : 2024.02.28
  • 심사 : 2024.06.18
  • 발행 : 2024.11.01

초록

Objective: Somatostatin (SS) plays important regulatory roles in animal growth and reproduction by affecting the synthesis and secretion of growth hormone (GH). However, the mechanism by which SS regulates growth and development in goats is still unclear. Methods: In this study, we randomly selected eight 7-month-old Dazu black goats (DBGs) of similar body weight and equally assigned four bucks as the immunised and negative control groups. The immunised group received the Salmonella typhi attenuated vaccine X9241 (ptCS/2SS-asd) orally, whilst the negative control group received the empty vector vaccine X9241 (pVAX-asd) orally. Results: The SS concentration in the serum of goats in the immunised group was significantly lower than that in the negative control group, and the daily gain was significantly higher (p<0.05). SS-14 DNA vaccine immunisation resulted in significantly higher concentrations of growth-related hormones such as GH-releasing hormone and insulin growth factor 1 (IGF-1) in the serum of goats (p<0.05). RNA-seq analysis of hypothalamus of oral SS-14 DNA vaccine and negative control DBGs identified 31 differentially expressed genes (DEGs). Pituitary gland identified 164 DEGs. A total of 246 DEGs were detected in the liver by RNA-seq. Gene ontology of DEGs was enriched in mitochondrial envelope, extracellular region, receptor binding and cell proliferation. The biological metabolic pathways associated with DEGs were explored by Kyoto encyclopedia of genes and genomes analysis. DEGs were associated with metabolic pathways, oxidative phosphorylation, vitamin digestion and absorption and galactose metabolism. These candidate genes (e.g. DGKK, CYTB, DUSP1, and LRAT) may provide references for exploring the molecular mechanisms by which SS promotes growth and development. Conclusion: Overall, these results demonstrated that the SS DNA vaccine enhanced the growth of DBGs by altering growth-related hormone concentrations and regulating the expression of growth-related genes in the hypothalamic-pituitary-liver axis.

키워드

과제정보

We appreciate the support from the National Natural Science Foundation of China, the Chongqing Postgraduate Research and Innovation Program, and the Innovation and Entrepreneurship Training Program for Undergraduates of Southwest University.

참고문헌

  1. Dawson JM, Soar JB, Buttery PJ, Craigon J, Gill M, Beever DE. The effect of immunization against somatostatin and beta-agonist administration alone and in combination on growth and carcass composition in young steers. Anim Sci 1997;64:37-51. https://doi.org/10.1017/s1357729800015538
  2. Wojcik-Gladysz A, Szlis M, Misztal A, Przybyl BJ, Polkowska J. Obestatin stimulates the somatotrophic axis activity in sheep. Brain Res 2018;1678:278-87. https://doi.org/10.1016/j.brainres.2017.10.036
  3. Chaves FM, Wasinski F, Tavares MR, et al. Effects of the isolated and combined ablation of growth hormone and IGF-1 receptors in somatostatin neurons. Endocrinology 2022;163:bqac045. https://doi.org/10.1210/endocr/bqac045
  4. Han Y, Na R, Jiang X, et al. Effect of a novel somatostatin-14 DNA vaccine fused to tPA signal peptide and CpG adjuvant on goat lactation and milk composition. Small Rumin Res 2020;187:106107. https://doi.org/10.1016/j.smallrumres.2020.106107
  5. Han YG, Ye JH, Zhao QT, et al. Oral SS-14 DNA vaccine is more potent than Oral SS-28 DNA vaccine in promoting rat lactation. Pak J Zool 2019;51:1711-9. https://doi.org/10.17582/journal.pjz/2019.51.5.1711.1719
  6. Ravichandran M, Xian TEWH, Prabhakaran G, Parasuraman S, Norazmi MN. Live, genetically attenuated, cold-chain-free cholera vaccine-a research and development journey: light at the end of a long tunnel. Malays J Med Sci 2022;29:1-7. https://doi.org/10.21315/mjms2022.29.2.1
  7. Zhao Z, Yang T, Qiao L, He Q, Dai Z. Reproductive characteristics of Dazu black goats, a newly discovered Chinese indigenous breed resource with high litter sizes. Pak J Zool 2019;51:399-403. https://doi.org/10.17582/journal.pjz/2019.51.2.399.403
  8. Han YG, Zeng Y, Huang YF, Huang DL, Peng P, Na RS. A nonsynonymous SNP within the AMH gene is associated with litter size in Dazu black goats. Anim Biotechnol 2022;33:992-6. https://doi.org/10.1080/10495398.2020.1842750
  9. Na R, Ni W, Guangxin E, Zeng Y, Han YG, Huang YF. SNP screening of the MSTN gene and correlation analysis between genetic polymorphisms and growth traits in Dazu black goat. Anim Biotechnol 2021;32:558-65. https://doi.org/10.1080/10495398.2020.1727915
  10. Birzniece V, Sutanto S, Ho KKY. Gender difference in the neuroendocrine regulation of growth hormone axis by selective estrogen receptor modulators. J Clin Endocrinol Metab 2012;97:E521-7. https://doi.org/10.1210/jc.2011-3347
  11. Han Y, Peng X, Li K, et al. Potent effect of KISS1-54 DNA vaccine compared with KISS1-10 DNA vaccine in inhibiting the fertility of female rats. Vaccine 2018;36:6631-9. https://doi.org/10.1016/j.vaccine.2018.09.053
  12. Chen SF, Zhou YQ, Chen YR, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884-90. https://doi.org/10.1093/bioinformatics/bty560
  13. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:35760. https://doi.org/10.1038/nmeth.3317
  14. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016;11:165067. https://doi.org/10.1038/nprot.2016.095
  15. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12:23. https://doi.org/10.1186/14712105-12-323
  16. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059014-0550-8
  17. Wasinski F, Tavares MR, Gusmao DO, et al. Central growth hormone action regulates neuroglial and proinflammatory markers in the hypothalamus of male mice. Neurosci Lett 2023;806:137236. https://doi.org/10.1016/j.neulet.2023.137236
  18. Vazquez-Borrego MC, del Rio-Moreno M, Pyatkov M, et al. Direct and systemic actions of growth hormone receptor (GHR)-signaling on hepatic glycolysis, de novo lipogenesis and insulin sensitivity, associated with steatosis. Metabolism 2023;144:155589. https://doi.org/10.1016/j.metabol.2023.155589
  19. Granata R. Peripheral activities of growth hormone-releasing hormone. J Endocrinol Invest 2016;39:721-7. https://doi.org/10.1007/s40618-016-0440-x
  20. Hu Y, Liu H, Song C, et al. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development. Gene 2015;559:38-43. https://doi.org/10.1016/j.gene.2015.01.009
  21. Gardiner J, Bloom S. Ghrelin gets its goat. Cell Metab 2008;7:193-4. https://doi.org/10.1016/j.cmet.2008.02.009
  22. Romano N, Lafont C, Campos P, et al. Median eminence blood flow influences food intake by regulating ghrelin access to the metabolic brain. JCI Insight 2023;8:e165763. https://doi.org/10.1172/jci.insight.165763
  23. Irizarry VTC, Jiang YW, He YL, Xu PW. Hypothalamic estrogen signaling and adipose tissue metabolism in energy homeostasis. Front Endocrinol 2022;13:898139. https://doi.org/10.3389/fendo.2022.898139
  24. Vicennati V, Ceroni L, Gagliardi L, Gambineri A, Pasquali R. Response of the hypothalamic-pituitary-adrenocortical axis to high-protein/fat and high-carbohydrate meals in women with different obesity phenotypes. J Clin Endocrinol Metab 2002;87:3984-8. https://doi.org/10.1210/jc.87.8.3984
  25. Seoane LM, Al-Massadi O, Barreiro F, Dieguez C, Casanueva FF. Growth hormone and somatostatin directly inhibit gastric ghrelin secretion. an in vitro organ culture system. J Endocrinol Invest 2007;30:RC22-5. https://doi.org/10.1007/bf03350806
  26. Manina AA, Goranov IT, Mikhailova AG, Kucherenko RP, Usova IP. Subcellular changes in posterior hypothalamus at the peak of immune response. Vestn Akad Med Nauk SSSR 1980;11:51-3.
  27. Frapin M, Guignard S, Meistermann D, et al. Maternal protein restriction in rats alters the expression of genes involved in mitochondrial metabolism and epitranscriptomics in fetal hypothalamus. Nutrients 2020;12:1464. https://doi.org/10.3390/nu12051464
  28. Uddin A, Choudhury MN, Chakraborty S. Factors influencing codon usage of mitochondrial ND1 gene in pisces, aves and mammals. Mitochondrion 2017;37:17-26. https://doi.org/10.1016/j.mito.2017.06.004
  29. Cossin-Sevrin N, Hsu BY, Marciau C, Viblanc VA, Ruuskanen S, Stier A. Effect of prenatal glucocorticoids and thyroid hormones on developmental plasticity of mitochondrial aerobic metabolism, growth and survival: an experimental test in wild great tits. J Exp Biol 2022;225:jeb243414. https://doi.org/10.1242/jeb.243414
  30. Liang C, Zhang S, Robinson D, et al. Mitochondrial micro-proteins link metabolic cues to respiratory chain biogenesis. Cell Rep 2022;40:111204. https://doi.org/10.1016/j.celrep.2022.111204
  31. Chen JX, Song ZH, Rong MJ, Min LJ, Sun YJ. The association analysis between Cytb polymorphism and growth traits in three Chinese donkey breeds. Livest Sci 2009;126:306-9. https://doi.org/10.1016/j.livsci.2009.06.012
  32. Prickett AR, Montibus B, Barkas N, et al. Imprinted gene expression and function of the dopa decarboxylase gene in the developing heart. Front Cell Dev Biol 2021;9:676543. https://doi.org/10.3389/fcell.2021.676543
  33. Purwana IN, Kanasaki H, Oride A, Miyazaki K. Induction of dual specificity phosphatase 1 (DUSP1) by gonadotropin-releasing hormone (GnRH) and the role for gonadotropin subunit gene expression in mouse pituitary gonadotroph LbetaT2 cells. Biol Reprod 2010;82:352-62. https://doi.org/10.1095/biolreprod.109.080440
  34. Mizusawa N, Harada N, Iwata T, Ohigashi I, Itakura M, Yoshimoto K. Identification of protease serine S1 family member 53 as a mitochondrial protein in murine islet beta cells. Islets 2022;14:1-13. https://doi.org/10.1080/19382014.2021.1982325
  35. Mosquera L, Forristall C, Zhou Y, King ML. A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development 1993;117:377-86. https://doi.org/10.1242/dev.117.1.377
  36. Goshu HA, Xiaoyun X, Chu M, Pengjia B, Zhi DX, Yan P. Novel copy number variations of the CHRM3 gene associated with gene expression and growth traits in Chinese Datong yak (Bos grunniens). J Appl Anim Res 2020;48:156-65. https://doi.org/10.1080/09712119.2020.1753750
  37. Liu Z, Sun Y, Jiang Y, et al. Follicle-stimulating hormone (FSH) promotes retinol uptake and metabolism in the mouse ovary. Reprod Biol Endocrinol 2018;16:52. https://doi.org/10.1186/s12958-018-0371-9
  38. Nagatsuma K, Hano H, Murakami K, et al. Hepatic stellate cells that coexpress LRAT and CRBP-1 partially contribute to portal fibrogenesis in patients with human viral hepatitis. Liver Int 2014;34:243-52. https://doi.org/10.1111/liv.12255