과제정보
The authors would like to thank Prof Iwasawa Atsushi at the Faculty of Applied Biological Science, Gifu University, for his assistance during the laboratory experiment and Ms Takatera Kinuyo at Life Science Research Centre, Gifu University, for her kind assistance during the SEM analysis.
참고문헌
- Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 2009;92:1060-70. https://doi.org/10.3168/jds.2008-1389
- Zebeli Q, Mansmann D, Steingass H, Ametaj BN. Balancing diets for physically effective fibre and ruminally degradable starch: A key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livest Sci 2010;127:1-10. https://doi.org/10.1016/j.livsci.2009.09.003
- Nikkhah A. Barley grain for ruminants: a global treasure or tragedy. J Anim Sci Biotechnol 2012;3:22. https://doi.org/10.1186/2049-1891-3-22
- Yang Y, Dong G, Wang Z, Liu J, Chen J, Zhang Z. Treatment of corn with lactic acid or hydrochloric acid modulates the rumen and plasma metabolic profiles as well as inflammatory responses in beef steers. BMC Vet Res 2018;14:408. https://doi.org/10.1186/s12917-018-1734-3
- Dailey OD, Dowd MK, Mayorga JC. Influence of lactic acid on the solubilization of protein during corn steeping. J Agric Food Chem 2000;48:1352-7. https://doi.org/10.1021/jf990866s
- Iqbal S, Zebeli Q, Mazzolari A, et al. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows. J Dairy Sci 2009;92:6023-32. https://doi.org/10.3168/jds.2009-2380
- Iqbal S, Terrill SJ, Zebeli Q, et al. Treating barley grain with lactic acid and heat prevented sub-acute ruminal acidosis and increased milk fat content in dairy cows. Anim Feed Sci Technol 2012;172:141-9. https://doi.org/10.1016/j.anifeedsci.2011.12.024
- Deckardt K, Metzler-Zebeli BU, Zebeli Q. Processing barley grain with lactic acid and tannic acid ameliorates rumen microbial fermentation and degradation of dietary fibre in vitro. J Sci Food Agric 2016;96:223-31. https://doi.org/10.1002/jsfa.7085
- Votterl JC, Zebeli Q, Hennig-Pauka I, Metzler-Zebeli BU. Soaking in lactic acid lowers the phytate-phosphorus content and increases the resistant starch in wheat and corn grains. Anim Feed Sci Technol 2019;252:115-25. https://doi.org/10.1016/j.anifeedsci.2019.04.013
- Beauchemin KA, McGinn SM. Methane emissions from feedlot cattle fed barley or corn diets1. J Anim Sci 2005;83:653-61. https://doi.org/10.2527/2005.833653x
- McCleary BV, Monaghan DA. Measurement of resistant starch. J AOAC Int 2002;85:665-75. https://doi.org/10.1093/jaoac/85.3.665
- Martinez TF, McAllister TA, Wang Y, Reuter T. Effects of tannic acid and quebracho tannins on in vitro ruminal fermentation of wheat and corn grain. J Sci Food Agric 2006;86:1244-56. https://doi.org/10.1002/jsfa.2485
- National Research Council (NRC). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, DC, USA: National Academic Press; 2007.
- Tian K, Liu J, Sun Y, et al. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Anim Feed Sci Technol 2019;258:114299. https://doi.org/10.1016/j.anifeedsci.2019.114299
- Horwitz W; AOAC International. Official methods of analysis of AOAC International. 18th ed. Gaithersburg, MD, USA: AOAC International; 2005.
- Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Koehler LH. Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal Chem 1952;24:1576-9. https://doi.org/10.1021/ac60070a014
- Aldian D, Harisa LD, Mitsuishi H, Tian K, Iwasawa A, Yayota M. Diverse forage improves lipid metabolism and antioxidant capacity in goats, as revealed by metabolomics. Animal 2023;17:100981. https://doi.org/10.1016/j.animal.2023.100981
- Moss AR, Jouany JP, Newbold J. Methane production by ruminants: its contribution to global warming. Ann Zootech 2000;49:231-53. https://doi.org/10.1051/animres:2000119
- Pang Z, Zhou G, Ewald J, et al. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc 2022;17:1735-61. https://doi.org/10.1038/s41596-022-00710-w
- Mickdam E, Khiaosa-ard R, Metzler-Zebeli BU, et al. Modulation of ruminal fermentation profile and microbial abundance in cows fed diets treated with lactic acid, without or with inorganic phosphorus supplementation. Anim Feed Sci Technol 2017;230:1-12. https://doi.org/10.1016/j.anifeedsci.2017.05.017
- Zhu JH, Haase NU, Kempf W. Investigations on the laboratory scale separation of mung bean starch. Starch-Starke 1990;42:1-4. https://doi.org/10.1002/star.19900420102
- Dailey OD. Effect of lactic acid on protein solubilization and starch yield in corn wet-mill steeping: a study of hybrid effects. Cereal Chem 2002;79:257-60. https://doi.org/10.1094/CCHEM.2002.79.2.257
- Vandenbergh PA. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 1993;12:221-37. https://doi.org/10.1111/j.1574-6976.1993.tb00020.x
- Skrede G, Herstad O, Sahlstrom S, Holck A, Slinde E, Skrede A. Effects of lactic acid fermentation on wheat and barley carbohydrate composition and production performance in the chicken. Anim Feed Sci Technol 2003;105:135-48. https://doi.org/10.1016/S0377-8401(03)00055-5
- Humer E, Zebeli Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Anim Feed Sci Technol 2017;226:133-51. https://doi.org/10.1016/j.anifeedsci.2017.02.005
- Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch-a review. Compr Rev Food Sci Food Saf 2006;5:1-17. https://doi.org/10.1111/j.1541-4337.2006.tb00076.x
- Harder H, Khol-Parisini A, Zebeli Q. Modulation of resistant starch and nutrient composition of barley grain using organic acids and thermal cycling treatments. Starch-Starke 2015;67:654-62. https://doi.org/10.1002/star.201500040
- Iqbal S, Zebeli Q, Mazzolari A, Dunn SM, Ametaj BN. Feeding rolled barley grain steeped in lactic acid modulated energy status and innate immunity in dairy cows. J Dairy Sci 2010;93:5147-56. https://doi.org/10.3168/jds.2010-3118
- Serna-Saldivar SO, Mezo-Villanueva M. Effect of a cell-wall-degrading enzyme complex on starch recovery and steeping requirements of sorghum and maize. Cereal Chem 2003;80:148-53. https://doi.org/10.1094/CCHEM.2003.80.2.148
- Tian KE, Luo G, Aldian D, Yayota M. Treatment of corn with lactic acid delayed in vitro ruminal degradation without compromising fermentation: a biological and morphological monitoring study. Front Vet Sci 2024;11:1336800. https://doi.org/10.3389/fvets.2024.1336800
- Hellebois T, Gaiani C, Planchon S, Renaut J, Soukoulis C. Impact of heat treatment on the acid induced gelation of brewers' spent grain protein isolate. Food Hydrocoll 2021;113:106531. https://doi.org/10.1016/j.foodhyd.2020.106531
- Pereira AM, de Lurdes Nunes Enes Dapkevicius M, Borba AES. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: which microorganisms are involved in lowering methane emission? Anim Microbiome 2022;4:5. https://doi.org/10.1186/s42523-021-00153-w
- Harder H, Khol-Parisini A, Metzler-Zebeli BU, Klevenhusen F, Zebeli Q. Treatment of grain with organic acids at 2 different dietary phosphorus levels modulates ruminal microbial community structure and fermentation patterns in vitro. J Dairy Sci 2015;98:8107-20. https://doi.org/10.3168/jds.2015-9913
- Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol 2015;6:1313. https://doi.org/10.3389/fmicb.2015.01313
- Petrova P, Petrov K. Lactic acid fermentation of cereals and pseudocereals: ancient nutritional biotechnologies with modern applications. Nutrients 2020;12:1118. https://doi.org/10.3390/nu12041118
- Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003;62:67-72. https://doi.org/10.1079/PNS2002207
- Tie S, Zhang L, Li B, et al. Effect of dual targeting procyanidins nanoparticles on metabolomics of lipopolysaccharide-stimulated inflammatory macrophages. Food Sci Hum Wellness 2023;12:2252-62. https://doi.org/10.1016/j.fshw.2023.03.045
- Chen XB, Gomes MJ. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives: an overview of the technical details. Aberdeen, UK: International Feed Resources Unit, Rowett Research Institute; 1992.
- Broquist HP. Lysine-pipecolic acid metabolic relationships in microbes and mammals. Annu Rev Nutr 1991;11:435-48. https://doi.org/10.1146/annurev.nu.11.070191.002251
- Wood JD, Richardson RI, Nute GR, et al. Effects of fatty acids on meat quality: a review. Meat Sci 2004;66:21-32. https://doi.org/10.1016/S0309-1740(03)00022-6
- Liu H, Chen Y, Ming D, et al. Integrative analysis of indirect calorimetry and metabolomics profiling reveals alterations in energy metabolism between fed and fasted pigs. J Anim Sci Biotechnol 2018;9:41. https://doi.org/10.1186/s40104-018-0257-x