DOI QR코드

DOI QR Code

Nicotinamide benefited amino acid metabolism and rumen fermentation pattern to improve growth performance of growing lambs

  • YuAng Wang (College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University) ;
  • Hao Wu (College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University) ;
  • Yiwei Zhang (College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University) ;
  • Mingfeng Fei (Huzhou Zifeng Ecological Agriculture Co., Ltd) ;
  • Zhefeng Li (Hangzhou King Techina Feed Co., Ltd) ;
  • Daxi Ren (Institute of Dairy Science, College of Animal Science, Zhejiang University) ;
  • Chong Wang (College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University) ;
  • Xiaoshi Wei (College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University)
  • 투고 : 2024.01.09
  • 심사 : 2024.05.15
  • 발행 : 2024.11.01

초록

Objective: Nicotinamide (NAM) is easily degraded in the rumen, but the rumen-protected NAM (RPN) supplementation might enable the use of NAM in ruminants. This study aimed to elucidate the effects of RPN supplementation on growth performance, rumen fermentation, antioxidant status and amino acid (AA) metabolism in growing lambs. Methods: A total of 128 healthy and similar lambs (21.3±0.28 kg, 70±6.3 days of age) were allotted to 1 of 4 groups. The treatments were 0, 0.5, 1, and 2 g/d RPN supplementation. The RPN products (50% bioavailability) were fed at 0700 h every day for 12 weeks. All lambs were fed the same pelleted total mixed rations to allow ad libitum consumption and had free access to water. Results: The RPN tended to increase the average daily gain and feed efficiency. The tendencies of RPN×day interaction were found for dry matter intake during the entire study (p = 0.078 and 0.073, respectively). The proportions of acetic acid, isobutyric acid and isovaleric acid were decreased, whereas the proportions of propionic acid and valeric acid were increased (p<0.05). The ratio of acetic acid to propionic acid was decreased (p<0.05). Moreover, the antioxidative status was enhanced and the glucose concentration was increased by RPN (p<0.05). In addition, 17 AAs were detected in plasma, of which 11 AAs were increased by RPN (p<0.05). Plasma metabolomics analysis identified 1,395 compounds belonging to 15 classes, among which 7 peptides were significantly changed after RPN supplementation. Conclusion: Overall, the results suggested that RPN supplementation favoured the rumen fermentation pattern to propionic acid-type with benefited glucose metabolism, enhanced antioxidant capacity, and changed the AA and small peptide metabolism. This study provides a new perspective for studying the relationship between vitamin and AA metabolism.

키워드

과제정보

We are grateful to the members of Chong Wang's laboratory and the staff of Tianxia Animal Husbandry (Huzhou, China) for providing valuable assistance in animal care and sample collection.

참고문헌

  1. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci 2007;32:12-9. https://doi.org/10.1016/j.tibs.2006.11.006 
  2. Wei XS, Cai CJ, He JJ, et al. Effects of biotin and nicotinamide supplementation on glucose and lipid metabolism and milk production of transition dairy cows. Anim Feed Sci Technol 2018;237:106-17. https://doi.org/10.1016/j.anifeedsci.2018.01.012 
  3. Wei XS, Yin QY, Zhao HH, Cao YC, Cai CJ, Yao JH. Metabolomics for the effect of biotin and nicotinamide on transition dairy cows. J Agric Food Chem 2018;66:5723-32. https://doi.org/10.1021/acs.jafc.8b00421 
  4. Wei XS, Yin QY, Zhao HH, et al. Nicotinamide supplementation during postpartum and peripartum modulates hepatic energy and lipid metabolism, oxidative status, and metabolomics profile, as well as lipids in the adipose tissue of goats. Anim Feed Sci Technol 2021;274:114849. https://doi.org/10.1016/j.anifeedsci.2021.114849 
  5. Mitchell SJ, Bernier M, Aon MA, et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab 2018;27:667-76. https://doi.org/10.1016/j.cmet.2018.02.001 
  6. Wei XS, Zhao HH, He JJ, et al. Maternal nicotinamide supplementation during the perinatal period modifies the small intestine morphology and antioxidative status of offspring kids. Anim Feed Sci Technol 2019;252:41-50. https://doi.org/10.1016/j.anifeedsci.2019.04.003 
  7. Wei XS, Yin QY, Zhao HH, et al. Maternal nicotinamide supplementation during late gestation and early lactation alters hepatic glucose and lipid metabolism kids. Anim Feed Sci Technol 2020;267:114528. https://doi.org/10.1016/j.anifeedsci.2020.114528 
  8. Santschi DE, Berthiaume R, Matte JJ, Mustafa AF, Girard CL. Fate of supplementary B-vitamins in the gastrointestinal tract of dairy cows. J Dairy Sci 2005;88:2043-54. https://doi.org/10.3168/jds.S0022-0302(05)72881-2 
  9. Pires JAA, Grummer RR. The use of nicotinic acid to induce sustained low plasma nonesterified fatty acids in feed-restricted Holstein cows. J Dairy Sci 2007;90:3725-32. https://doi.org/10.3168/jds.2006-904 
  10. Kinoshita A, Kenez A, Locher L, et al. Insulin signaling in liver and adipose tissues in periparturient dairy cows supplemented with dietary nicotinic acid. PLoS One 2016;11:e0147028. https://doi.org/10.1371/journal.pone.0147028 
  11. Pescara JB, Pires JAA, Grummer RR. Antilipolytic and lipolytic effects of administering free or ruminally protected nicotinic acid to feed-restricted Holstein cows. J Dairy Sci 2010;93:5385-96. https://doi.org/10.3168/jds.2010-3402 
  12. Morey SD, Mamedova LK, Anderson DE, Armendariz CK, Titgemeyer EC, Bradford BJ. Effects of encapsulated niacin on metabolism and production of periparturient dairy cows. J Dairy Sci 2011;94:5090-104. https://doi.org/10.3168/jds.2011-4304 
  13. Yuan K, Shaver RD, Bertics SJ, Espineira M, Grummer RR. Effect of rumen-protected niacin on lipid metabolism, oxidative stress, and performance of transition dairy cows. J Dairy Sci 2012;95:2673-9. https://doi.org/10.3168/jds.2011-5096 
  14. Shen JS, Chai Z, Song LJ, Liu JX, Wu YM. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J Dairy Sci 2012;95:5978-84. https://doi.org/10.3168/jds.2012-5499 
  15. Li F, Cao Y, Liu N, Yang X, Yao J, Yan D. Subacuteruminal acidosis challenge changed in situ degradability of feedstuffs in dairy goats. J Dairy Sci 2014;97:5101-9. https://doi.org/10.3168/jds.2013-7676 
  16. Hu WL, Liu JX, Ye JA, Wu YM, Guo YQ. Effect of tea saponin on rumen fermentation in vitro. Anim Feed Sci Technol 2005;120:333-9. https://doi.org/10.1016/j.anifeedsci.2005.02.029 
  17. Makkar HPS, Becker K. Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. Br J Nutr 1999;81:107-12. https://doi.org/10.1017/S0007114599000227 
  18. Dai Z, Wu Z, Jia S, Wu G. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 2014;964:116-27. https://doi.org/10.1016/j.jchromb.2014.03.025 
  19. Kong F, Gao Y, Tang M, et al. Effects of dietary rumen-protected Lys levels on rumen fermentation and bacterial community composition in Holstein heifers. Appl Microbiol Biotechnol 2020;104:6623-34. https://doi.org/10.1007/s00253-020-10684-y 
  20. Gu F, Liang S, Zhu S, Liu J, Sun HZ. Multi-omics revealed the effects of rumen-protected methionine on the nutrient profile of milk in dairy cows. Food Res Int 2021;149:110682. https://doi.org/10.1016/j.foodres.2021.110682 
  21. Urrutia NL, Harvatine KJ. Effect of conjugated linoleic acid and acetate on milk fat synthesis and adipose lipogenesis in lactating dairy cows. J Dairy Sci 2017;100:5792-804. https://doi.org/10.3168/jds.2016-12369 
  22. Samanta AK, Kewalramani, Kaur H. Effect of niacin supplementation on VFA production and microbial protein synthesis in cattle. Indian J Dairy Sci 2000;53:150-3. 
  23. Khan N, Kewalramani N, Chaurasia M, Singh S, Haq Z. Effect of niacin supplementation on in vitro rumen fermentation pattern in crossbred cattle. J Anim Res 2015;5:479-83. https://doi.org/10.5958/2277-940X.2015.00082.0 
  24. Backesjo CM, Li Y, Lindgren U, Haldosen LA. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 2006;21:993-1002. https://doi.org/10.1359/jbmr.060415 
  25. Bai L, Pang WJ, Yang YJ, Yang GS. Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 2008;307:129-40. https://doi.org/10.1007/s11010-007-9592-5 
  26. Jones CL, Stevens BM, Pollyea DA, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells. Cell Stem Cell 2020;27:748-64. https://doi.org/10.1016/j.stem.2020.07.021 
  27. Jones CL, Stevens BM, D'Alessandro A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell 2018;34:724-40. https://doi.org/10.1016/j.ccell.2018.10.005 
  28. Lee C, Lobos NE, Weiss WP. Effects of supplementing rumenprotected lysine and methionine during prepartum and postpartum periods on performance of dairy cows. J Dairy Sci 2019;102:11026-39. https://doi.org/10.3168/jds.2019-17125 
  29. Toledo MZ, Stangaferro ML, Gennari RS, et al. Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: lactation performance and plasma amino acid concentrations. J Dairy Sci 2021;104:7583-603. https://doi.org/10.3168/jds.2020-19021 
  30. Zheng C, Yao J, Guo L, et al. Leucine-induced promotion of postabsorptive EAA utilization and hepatic gluconeogenesis contributes to protein synthesis in skeletal muscle of dairy calves. J Anim Physiol Anim Nutr 2019;103:705-12. https://doi.org/10.1111/jpn.13072 
  31. Broer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008;88:249-86. https://doi.org/10.1152/physrev.00018.2006 
  32. Spanier B. Transcriptional and functional regulation of the intestinal peptide transporter PEPT1. J Physiol 2014;592:871-9. https://doi.org/10.1113/jphysiol.2013.258889 
  33. Gilbert ER, Wong EA, Webb KE Jr. Board-invited review: peptide absorption and utilization: Implications for animal nutrition and health. J Anim Sci 2008;86:2135-55. https://doi.org/10.2527/jas. 2007-0826 
  34. Wang CY, Liu S, Xie XN, Tan ZR. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des Devel Ther 2017;11:3511-7. https://doi.org/10.2147/DDDT.S151725 
  35. Lee VH. Membrane transporters. Eur J Pharm Sci 2000;11 (Suppl 2):S41-50. https://doi.org/10.1016/S0928-0987(00)00163-9 
  36. Toledo MZ, Baez GM, Garcia-Guerra A, et al. Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows. PLoS One 2017; 12:e0189117. https://doi.org/10.1371/journal.pone.0189117 
  37. Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome-a key determinant of cancer cell biology. Nat Rev Cancer 2012;12:741-52. https://doi.org/10.1038/nrc3340