DOI QR코드

DOI QR Code

Polyvinylidene chloride-resin 전구체와 ZnO 활성화제 비율 제어를 통한 슈퍼커패시터용 활성탄 전극 특성 최적화 연구

The optimal synthesis of activated carbon for supercapacitors via controlled ratios of Polyvinylidene chloride-resin precursor and ZnO agent

  • 전상은 (경북대학교 첨단소재공학부)
  • Sang-Eun Chun (School of Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2024.08.07
  • 심사 : 2024.09.10
  • 발행 : 2024.10.31

초록

Supercapacitors as energy storage devices require specific capacitance and rate capability improvements to achieve high energy and power densities. Activated carbon, commonly used as an electrode for supercapacitors, should have a porous structure for high capacitance and the large mesopores for high power. This study aims to produce mesoporous carbon for supercapacitors from the mixture of polyvinylidene chloride-resin (PVDC-resin) precursor and ZnO activating agent at a controlled mixing ratio via heat treatment. To synthesize porous carbon with high specific capacitance and high rate performance, PVDC-resin and ZnO were mixed in various ratios and activated at 950℃. Analysis of the pore structure and surface area of the synthesized carbon samples showed that the specific surface area and the amounts of micropores and mesopores also increased with more ZnO agents. Notably, the porous carbon synthesized from PVDC-resin to ZnO at a 2:3 ratio exhibited a high specific capacitance of 125 F g-1 and excellent rate performance of 74%, demonstrating its potential as an optimal supercapacitor electrode material based on its surface area and mesoporous structure. This study identifies the optimal mixing ratio of PVDC-resin precursor and ZnO activator for the economical and efficient synthesis of activated carbon.

키워드

과제정보

이 성과는 2022년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022R1A2C1009922)

참고문헌

  1. Y. Wang, P. Niu, J. Li, S. Wang, L. Li, Recent progress of phosphorus composite anodes for sodium/potassium ion batteries, Energy Storage Materials, 34 (2021) 436-460.
  2. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Advances, 3 (2013) 13059-13084.
  3. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, Journal of Materials Chemistry A, 5 (2017) 12653-12672.
  4. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews, 44 (2015) 7484-7539.
  5. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937-950.
  6. S. Dutta, A. Bhaumik, K.C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications, Energy & Environmental Science, 7 (2014) 3574-3592.
  7. B. Hwang, S.-E. Chun, Fabrication of mesoporous carbon from polyvinylidene chloride (PVDC)-resin precursor with Mg(OH)2 template for supercapacitor electrode, Journal of the Korean Institute of Surface Engineering, 52 (2019) 326-333.
  8. J.A. Macia-Agullo, B.C. Moore, D.C. Amoros, A.L.Solano, Activation of coal tar pitch carbon fibres: physical activation vs. chemical activation, Carbon, 42 (2004) 1367-1370.
  9. D.H. Jurcakova, A.M. Puziy, O.I. Poddubnaya, F.S. Garcia, J.M.D. Tascon, G.Q. Lu, Highly stable performance of supercapacitors from phosphorus-enriched carbons, Journal of the American Chemical Society, 131 (2009) 5026-5027.
  10. B. Hwang, S.H. Yi, S.E. Chun, Dual-role of ZnO as a templating and activating agent to derive porous carbon from polyvinylidene chloride (PVDC) resin, Chemical Engineering Journal, 422 (2021) 130047.
  11. J.Y. Park, J. Hur, S.H. Yi, S.E. Chun, Porous carbon from polyvinylidene chloride or polyvinylidene fluoride with ZnO, Mg(OH)2, and KOH for supercapacitor, Carbon Letters, 34 (2024) 677-690.
  12. D.V. Lam, K. Jo, C.H. Kim, J.H. Kim, H.J. Lee, S.M. Lee, Activated carbon textile via chemistry of metal extraction for supercapacitors, ACS Nano, 10 (2016) 11351-11359.
  13. L. Wang, Q. Zhu, J. Zhao, Y. Guan, J. Liu, Z. An, B. Xu, Nitrogen-doped hierarchical porous carbon for supercapacitors with high rate performance, Microporous and Mesoporous Materials, 279 (2019) 439-445.
  14. A. Berman, M. Epstein, The kinetic model for carboreduction of zinc oxide, Journal de Physique IV France, 09 (1999) Pr3-319-Pr3-324.
  15. J. Hur, B. Hwang, L. Hong, S.J. Yoo, S.E. Chun, Fabrication of hydrophilic porous carbon from polyvinylidene chloride-resin via synergetic activation of ZnO and tetrahydrofuran for aqueous supercapacitors, Surfaces and Interfaces, 40 (2023) 103127.
  16. S.E. Chun, Charge storage behavior of the carbons derived from polyvinylidene chloride-resin and polyvinylidene fluoride in different pH electrolytes, Composites Research, 35 (2022) 394-401.
  17. B. Xu, S. Hou, M. Chu, G. Cao, Y. Yang, An activation-free method for preparing microporous carbon by the pyrolysis of poly(vinylidene fluoride), Carbon, 48 (2010) 2812-2814.
  18. B. Xu, F. Wu, S. Chen, Z. Zhou, G. Cao, Y. Yang, A simple method for preparing porous carbon by PVDC pyrolysis, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316 (2008) 85-88.
  19. M. Endo, Y.J. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Koshiba, H. Hara, M.S. Dresselhaus, Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte, Journal of The Electrochemical Society, 148 (2001) A1135.
  20. R.D. Bohme, R.A. Wessling, The thermal decomposition of poly(vinylidene chloride) in the solid state, Journal of Applied Polymer Science, 16 (1972) 1761-1778.
  21. M. Endo, Y.J. Kim, K. Ishii, T. Inoue, T. Takeda, T. Maeda, T. Nomura, N. Miyashita, M.S. Dresselhaus, Structure and application of various saran-based carbons to aqueous electric double-layer capacitors, Journal of The Electrochemical Society, 149 (2002) A1473.
  22. M. Endo, Y.J. Kim, K. Ishii, T. Inoue, T. Nomura, N. Miyashita, M.S. Dresselhaus, Heat-treatment retention time dependence of polyvinylidenechloride-based carbons on their application to electric double-layer capacitors, Journal of Materials Research, 18 (2003) 693-701.
  23. P.R. Roberge, R. Beaudoin, J.F. Berthiaume, Fabrication and characterization of an activated carbon for electrochemical applications, Carbon, 26 (1988) 173-182.
  24. B. Xu, F. Wu, S. Chen, Z. Zhou, G. Cao, Y. Yang, High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs, Electrochimica Acta, 54 (2009) 2185-2189.
  25. M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer, G. Sravani, Nano ZnO-activated carbon composite electrodes for supercapacitors, Physica B: Condensed Matter, 405 (2010) 2286-2289.
  26. F. Caturla, M.M. Sabio, F.R. Reinoso, Preparation of activated carbon by chemical activation with ZnCl2, Carbon, 29 (1991) 999-1007.
  27. C. Sangwichien, G.L. Aranovich, M.D. Donohue, Density functional theory predictions of adsorption isotherms with hysteresis loops, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (2002) 313-320.
  28. S.E. Chun, J.F. Whitacre, The evolution of electrochemical functionality of carbons derived from glucose during pyrolysis and activation, Electrochimica Acta, 60 (2012) 392-400.
  29. S.E. Chun, Y.N. Picard, J.F. Whitacre, Relating precursor pyrolysis conditions and aqueous electrolyte capacitive energy storage properties for activated carbons derived from anhydrous glucose-d, Journal of The Electrochemical Society, 158 (2011) A83.
  30. F. Chen, Z. Zhang, Q. Yang, Y. Yang, Z. Bao, Q. Ren, Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading low-quality natural gas, ACS Sustainable Chemistry & Engineering, 8 (2020) 977-985.
  31. C. Kim, K.S. Yang, Y.J. Kim, M. Endo, Heat treatment temperature effects on structural and electrochemical properties of PVDC-based disordered carbons, Journal of Materials Science, 38 (2003) 2987-2991.
  32. Z. Guan, Z. Guan, Z. Li, J. Liu, K. Yu, Characterization and preparation of nano-porous carbon derived from hemp stems as anode for lithium-ion batteries, Nanoscale Research Letters, 14 (2019) 338.
  33. D. Liu, Y. Liu, G. Xu, Y. Ding, B. Fan, H. Li, Precisely tuning porosity and outstanding supercapacitor performance of phenolic resin-based carbons via citrate activation, Journal of Energy Storage, 67 (2023) 107610.
  34. J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 270 (1995) 590-593.
  35. W. Xing, J.S. Xue, J.R. Dahn, Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries, Journal of The Electrochemical Society, 143 (1996) 3046.
  36. Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 34 (1996) 193-200.
  37. W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, 264 (1994) 1115-1118.
  38. J.R. Dahn, W. Xing, Y. Gao, The "falling cards model" for the structure of microporous carbons, Carbon, 35 (1997) 825-830.
  39. T. Zheng, Y. Liu, E.W. Fuller, S. Tseng, U. von Sacken, J.R. Dahn, Lithium insertion in high capacity carbonaceous materials, Journal of The Electrochemical Society, 142 (1995) 2581.
  40. W. Zhou, M. Yang, M. Chen, G. Zhang, X. Han, J. Chen, D. Ma, P. Zhang, Ion-sieving effect enabled by sulfonation of cellulose separator realizing dendrite-free Zn deposition, Advanced Functional Materials, 34 (2024) 2315444.
  41. L. Eliad, G. Salitra, A. Soffer, D. Aurbach, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions, The Journal of Physical Chemistry B, 105 (2001) 6880-6887.
  42. S.E. Chun, J.F. Whitacre, Formation of micro/mesopores during chemical activation in tailor-made nongraphitic carbons, Microporous and Mesoporous Materials, 251 (2017) 34-41.
  43. J. Yang, H. Wu, M. Zhu, W. Ren, Y. Lin, H. Chen, F. Pan, Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors, Nano Energy, 33 (2017) 453-461.