DOI QR코드

DOI QR Code

다양한 시드층이 자기조립화된 나노 구조체 형성에 미치는 영향

Effect of various seed layers on the formation of self-organized nano structure

  • Dong-Hyun Kim (Department of Materials Engineering, Kwangwoon University) ;
  • Jun-Pyo Lee (Department of Materials Engineering, Kwangwoon University) ;
  • Joon-Seok Heo (Department of Materials Engineering, Kwangwoon University) ;
  • Masao Kamiko (Institute of Industrial Science, The University of Tokyo) ;
  • Keita Ito (Institute for Materials Research,Tohoku University) ;
  • Takeshi Seki (Institute for Materials Research,Tohoku University) ;
  • Jae-Geun Ha (Department of Materials Engineering, Kwangwoon University)
  • 투고 : 2024.05.07
  • 심사 : 2024.07.11
  • 발행 : 2024.10.31

초록

Using DC magnetron sputtering, we deposited a bilayer composed of a seed layer consisting of Ti, Cr, Co, and Zr, and an overlayer of Ag on MgO(001) single crystal substrates, creating self-assembled nanostructures. When Ti was used as the seed layer, it was observed that the formed nano-dots inherently aggregated into dot shapes. Additionally, Cr, Co, and Zr were chosen to investigate their influence on SLAA(Seed layer Assisted Agglomeration) depending on the seed layer material, revealing different shapes of the formed nano-dots. Moreover, it was observed that aggregation was inhibited as the thickness of the seed layer exceeded a critical point. X-ray diffraction analysis of the Ti seed layer revealed epitaxial growth of Ag along the (001) direction of the MgO substrate. In contrast, no epitaxial growth was observed when Cr, Co, and Zr were used as seed layer materials. Ultimately, Ti was identified as the most suitable seed layer material for the fabrication of self-assembled nanostructures utilizing the aggregation phenomenon of the bilayer. This research is deemed sufficiently valuable in addressing the limitations associated with the low productivity and high cost of current nano thin film processes.

키워드

과제정보

이 연구는 2023년도 광운대학교 연구년에 의하여 연구되었으며, 이에 감사드립니다.

참고문헌

  1. E.M. Hicks, S. Zou, G.C. Schatz, K.G. Spears, R.P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Kall, Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography, Nano Letters, 5 (2005) 1065-1070.
  2. J. Lian, L. Wang, X. Sun, Q. Yu, R.C. Ewing, Patterning metallic nanostructures by ion-beam-induced dewetting and rayleigh instability, Nano Letters, 6 (2006) 1047-1052.
  3. M.H. Lash, M.V. Fedorchak, J.J. McCarthy, S.R. Little, Scaling up self-assembly: bottom-up approaches to macroscopic particle organization, Soft Matter, 11 (2015) 5597-5609.
  4. J.V. Barth, G. Costantini, K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nanoscience and Technology, 437 (2010) 67-75.
  5. M. Castro, R. Cuerno, L. Vazquez, R. Gago, Self-organized ordering of nanostructures produced by ion-beam sputtering, Physical Review Letters, 94 (2005) 016102.
  6. V. Polshettiwar, B. Baruwati, R.S. Varma, Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis, ACS Nano, 3 (2009) 728-736.
  7. K. Kulbaba, I. Manners, Polyferroceny-lsilanes: metal-containing polymers for materials science, self-assembly and nanostructure applications, Macromolecular Rapid Communications, 22 (2001) 711-724.
  8. J. Gong, G. Li, Z. Tang, Self-assembly of noble metal nanocrystals: fabrication, optical property, and application, Nano Today, 7 (2012) 564-585.
  9. A. Amirjani, D.F. Haghshenas, Ag nanostructures as the surface plasmon resonance (SPR)-based sensors: A mechanistic study with an emphasis on heavy metallic ions detection, Sensors and Actuators B: Chemical, 273 (2018) 1768-1779.
  10. H.I. Peng, C.M. Strohsahl, K.E. Leach, T.D. Krauss, B.L. Miller, Label-free DNA detection on nanostructured Ag surfaces, ACS Nano, 3 (2009) 2265-2273.
  11. J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, Z. He, Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles, Sensors, 15 (2015) 12205-12217.
  12. C.Y. Li, M. Meng, S.C. Huang, L. Li, S.R. Huang, S. Chen, L.Y. Meng, R. Panneerselvam, S. Zhang, B. Ren, Z.L. Yang, J.F. Li, Z.Q. Tian, Smart Ag nanostructures for plasmon-enhanced spectroscopies, Journal of the American Chemical Society, 137 (2015) 13784-13787.
  13. T. Lee, S. Kwon, S. Jung, H. Lim, J.J. Lee, Macroscopic Ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates, Nano Research, 12 (2019) 2554-2558.
  14. J. Leem, H.W. Kang, S.H. Ko, H.J. Sung, Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems, Nanoscale, 6 (2014) 2895-2901.
  15. S. Patnaik, D.P. Sahoo, K. Parida, An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications, Renewable and Sustainable Energy Reviews, 82 (2018) 1297-1312.
  16. P. Christopher, D.B. Ingram, S. Linic, Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons, The Journal of Physical Chemistry C, 114 (2010) 9173-9177.
  17. S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M.Y. Li, J. Lee, Various silver nanostructures on sapphire using plasmon self-assembly and dewetting of thin films, Nano-Micro Letters, 9 (2017) 17.
  18. D.J. Srolovitz, S.A. Safran, Capillary instabilities in thin films. I. energetics, Journal of Applied Physics, 60 (1986) 247-254.
  19. D.J. Srolovitz, S.A. Safran, Capillary instabilities in thin films. II. kinetics, Journal of Applied Physics, 60 (1986) 255-260.
  20. K.T. Miller, F.F. Lange, D.B. Marshall, The instability of polycrystalline thin films: experiment and theory, Journal of Materials Research, 5 (1990) 151-160.
  21. D.J. Srolovitz, M.G. Goldiner, The thermodynamics and kinetics of film agglomeration, The Journal of The Minerals, Metals & Materials Society, 47 (1995) 31-36.
  22. F. G'enin, W. Mullins, P. Wynblatt, The effect of stress on grain boundary grooving, Acta Metallurgica Materialia, 41 (1993) 3541-3547.
  23. J.J. Rha, J.K. Park, Stability of grain configurations of thin films-A model for agglomeration, Journal of Applied Physics, 82 (1997) 1608-1616.
  24. S.J. Jung, T. Lutz, M. Boese, J.D. Holmes, J.J. Boland, Surface energy driven agglomeration and growth of single crystal metal wires, Nano Letters, 11 (2011) 1294-1299.
  25. C.V. Thompson, Solid-state dewetting of thin films, Annual Review of Materials Research, 42 (2012) 399-434.
  26. C. Boragno, F. Buatier De Mongeot, R. Felici, I.K. Robinson, Critical thickness for the agglomeration of thin metal films, Physical Review B, 79 (2009) 155443.
  27. G. Seguini, J. Llamoja Curi, S. Spiga, G. Tallarida, C. Wiemer, M. Perego, Solid-state dewetting of ultrathin Au films on SiO2 and HfO2, Nanotechnology, 25 (2014) 495603.
  28. H.C. Kim, T.L. Alford, D.R. Allee, Thickness dependence on the thermal stability of silver thin films, Applied Physics Letters, 81 (2002) 4287-4289.
  29. C.Y. Liu, H.K. Kim, K.N. Tu, P.A. Totta, Dewetting of molten Sn on Au/Cu/Cr thin-film metallization, Applied Physics Letters, 69 (1996) 4014-4016.
  30. J.Y. Kwon, T.S. Yoon, K.B. Kim, S.H. Min, Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide, Journal of Applied Physics, 93 (2003) 3270-3278.
  31. J.M. Lee, B.I. Kim, Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures, Materials Science and Engineering A, 448-451 (2006) 769-773.
  32. J. Ye, Fabrication of ordered arrays of micro-and nanoscale features with control over their shape and size via templated solid-state dewetting, Scientific Reports, 5 (2015) 9823.
  33. F. Frost, B. Ziberi, T. Hoche, B. Rausc-henbach, The shape and ordering of self-organized nanostructures by ion sputtering, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 216 (2004) 9.
  34. C. Favazza, R. Kalyanaraman, R. Sureshkumar, Robust nanopatterning by laser-induced dewetting of metal nanofilms, Nanotechnology, 17 (2006) 4229.
  35. L. Zilberberg, S. Mitlin, H. Shankar, M. Asscher, Buffer layer assisted growth of Ag nanoparticles in titania thin films, The Journal of Physical Chemistry C, 119 (2015) 28979-28991.
  36. P.R. Gadkari, A.P. Warren, R.M. Todi, R.V. Petrova, K.R. Coffey, Comparison of the agglomeration behavior of thin metallic films on SiO2, Journal of Vacuum Science & Technology A, 23 (2005) 1152-1161.
  37. M. Sui, S. Kunwar, P. Pandey, S. Pandit, J. Lee, Improved localized surface plasmon resonance responses of multi-metallic Ag/Pt/Au/Pd nanostructures: systematic study on the fabrication mechanism and localized surface plasmon resonance properties by solid-state dewetting, New Journal of Physics, 21 (2019) 113049.
  38. P. Pandey, S. Kunwar, M. Sui, S. Bastola, J. Lee, Compositional effect on the fabrication of AgxPd1-x alloy nanoparticles on c-plane sapphire at distinctive stages of the solid-state-dewetting of bimetallic thin films, RSC Advances, 7 (2017) 55471-55481.
  39. M. Kamiko, J.W. Koo, J.M. Kim, J.G. Ha, Atomic force microscopy and x-ray diffraction studies on agglomeration phenomena of ultrathin Au/Fe bilayers, Journal of Vacuum Science & Technology A, 30 (2012) 031512.
  40. M. Kamiko, R. Suenaga, J.W. Koo, K. Nose, K. Kyuno, J.G. Ha, Epitaxial growth of fcc-Ag(001) nanodots on MgO(0 0 1) substrates via Ti seed layer-assisted agglomeration, Journal of Physics D: Applied Physics, 46 (2013) 505304.
  41. M. Kamiko, W.S. Kim, J.H. Ha, J.G. Ha, Fabrication of self-organized fcc-AuAg(001) alloy nanodots on MgO(001) substrates, Japanese Journal of Applied Physics, 58 (2019) SDDF01.
  42. M. Kamiko, R. Suenaga, J.W. Koo, K. Nose, K. Kyuno, Y. Mitsuda, J.G. Ha, Effect of seed layers on structure of self-organized Ag nanodots on MgO substrates, Japanese Journal of Applied Physics, 54 (2015), 06FH0.
  43. J.G. Ha, J.W. Koo, S.M. Koo, S. Arisawa, J.H. Koh, M. Kamiko, Novel fabrication method of self-organized FePd multilayer nanodots using the agglomeration of Au/Fe bilayer films, Japanese Journal of Applied Physics, 56 (2017) 070312.
  44. M. Kamiko, S.M. Kim, Y.S. Jeong, J.H. Ha, S.M. Koo, J.G. Ha, Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates, Physica E: Low-dimensional Systems and Nanostructures, 99 (2018) 320-329.
  45. L. Vitos, A.V. Ruban, H.L. Skriver, J.Kollar, The surface energy of metals, Surface Science, 411 (1998) 186-202.
  46. D. Necas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis, Central European Journal of Physics, 10 (2012) 181-188.
  47. D. O. Scanlon, A. Walsh, B. J. Morgan, M. Nolan, J. Fearon, and G. W. Watson, Surface sensitivity in lithium-doping of MgO: A density functional theory study with correction for on-site coulomb interactions, Journal of Physical Chemistry C, 111 (2007) 7971-7979.