DOI QR코드

DOI QR Code

Vulnerability Assessment of Total Pollution Load Management System in the Guem River Basin National Monitoring Data

수질오염총량 측정망 자료를 활용한 금강수계 오염총량관리 취약성 평가

  • Sang-Jun Lim (Department of Environmental Engineering, Chungnam National University) ;
  • Dongil Seo (Department of Environmental Engineering, Chungnam National University)
  • Received : 2024.09.16
  • Accepted : 2024.10.20
  • Published : 2024.10.31

Abstract

It is clear that the implementation of Total Pollution Load Management (TPLM) has contributed to the improvement of river water quality in Korea. However, it is also true that the TPLM has focused on point source pollution management, with limitations in addressing non-point source pollution. This study examined the issues of the current TPLM from the perspective of non-point source pollution, which is closely related to high-flow conditions, by analyzing Load Duration Curves (LDC) using water quality and flow data collected over the past four years from 21 sub-watersheds in the Geum River Basin. Since the current TPLM is based on water quality predictions using a static water body model that applies the average flow of the dry season, we found that the reduction in loads required under actual flow conditions could be up to 140 times greater than under the reference flow condition, indicating that load amounts under high-flow conditions are not reflected. Additionally, there were abnormal correlations between discharge loads and water quality in several sub-watersheds, and illogical situations arose where compliance with allocated loads did not align with achieving the target water quality. While the causes of such abnormal and illogical situations are diverse and complex, this study highlights the need for rational reflection of non-point source loads under high-flow conditions in water quality modeling. As a solution, we propose the application of watershed models and dynamic water body models.

그간의 수질오염총량관리 시행을 통한 우리나라 하천의 수질개선 성과는 분명하다. 하지만, 현행 오염총량관리 방식은 점오염원 관리에 치중되어 있어 비점오염원 관리에는 상대적으로 한계가 있다. 본 연구에서는 최근 4년간 금강수계 21개 단위유역 수질오염총량 측정망 수질 및 유량 자료를 활용한 부하지속곡선(LDC) 분석을 통해 고유량 조건과 밀접한 관련이 있는 비점오염원 측면의 현행 오염총량관리 문제점을 살펴보았다. 현행 오염총량관리는 저수기 평균유량을 적용하는 정적수체모델의 수질예측에 기반 하기 때문에 실측유량조건의 삭감필요부하량이 기준유량 조건과 비교하여 연간 최대 140배에 달하는 등 고유량 조건 부하량이 반영되지 않는 것을 확인할 수 있었다. 또한 다수의 단위유역에서 배출부하량과 수질의 비정상적 상관관계가 나타나고, 할당부하량 준수여부와 목표수질 달성여부가 일치하지 않는 비논리적인 상황이 발생하고 있음을 확인할 수 있었다. 이러한 비정상적, 비논리적 상황의 발생 원인은 매우 다양하고 복합적이나, 본 연구에서는 고유량 조건의 비점오염부하량이 수질모델링에 합리적으로 반영되어야 한다는 점에 주목하여 유역모델 및 동적수체모델 적용의 필요성을 대안으로 제시하였다.

Keywords

References

  1. Cheong EJ, Kim HT, Kim YS, Shin DS. 2016. Application of the Load Duration Curve (LDC) to Evaluate the Rate of Achievement of Target Water Quality in the Youngsan.Tamjin River Watersheds. Journal of Korean Society on Water Environment, 32(4): 349-356. [Korean Literature]
  2. Cho YC, Choi HM, Lee YJ, Ryu IG, Lee MG, Gu DH, Choi KW, Yu SJ. 2018. Statistical Analysis of Water Flow and Water Quality Data in the Imjin River Basin for Total Pollutant Load Management, J. Environ. Impact Assess. 27(4): 353-366. [Korean Literature]
  3. Chungnam-do, Chungbuk-do, Jeonbuk-do, Daejeon, Sejong. 2021. 4th (2021-2030) Basic Plan of Geum River Basin Total Pollution Load Management System.
  4. Daejeon, Sejong, Muju, Wanju, Iksan, Yeongdong, Okcheon, Eumseong, Jeungpyeong, Jincheon, Cheongju, Cheonan, Cheongyang, Gyeryong, Gongju, Geumsan, Buyeo, Seocheon, Nonsan. 2021, 2022. TPLC Implementation Evaluation Report.
  5. Jung KY, Kim HT, Kim SS, Shin DS, Kim GH. 2017. Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Nakdong River Unit Watersheds. Journal of Environmental Science International, 26(4): 433-445. [Korean Literature]
  6. Kim SG, Oh SY, Park SY, Na EH, Kim YS. 2023. Improvement and Implementation to Enhance the Effectiveness of the Total Pollution Load Control System, Journal of Korean Society on Water Environment, 39(4). [Korean Literature]
  7. Kim EK, Ryu JC, Kim HT, Kim YS, Shin DS. 2015. Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Han-River Watersheds. Journal of Korean Society on Water Environment, 31(6): 732-738. [Korean Literature]
  8. Ministry of Environment. 2022. Basic Policy for Total Pollution Load Control
  9. Ministry of Environment. 2023a. Guidelines for the Implementation of Detailed Cause Analysis in Total Pollution Load Managemen
  10. Ministry of Environment. 2023b. Water Environment Monitoring Network Installation and Operation Plan.
  11. National institute of Environmental Research. 2022, Technical Guidelines for Total Pollution Load Management System.
  12. Nevada Division of Environment Protection. 2003. Load Duration Curve Methodology for Assessment and TMDL Development.
  13. Nam BS, Hwang, HS, Cho MH. 2018. Analysis of Impaired Waterbody using Time Series Water Quality and Flow Rate Data for TPLMs. J. Korean Soc. Environ. Eng., 40(9): 359-371. [Korean Literature]