DOI QR코드

DOI QR Code

Preliminary Risk Assessment of Novel Fuel Gas Supply System for Ship Fueled by Liquid Hydrogen Using HAZOP-LOPA

HAZOP-LOPA 기법을 활용한 액체수소 연료공급시스템에 대한 예비 위험성 평가

  • Hyunyong Lee (System Safety Research Team, Korean Register(KR)) ;
  • Sangik Lee (System Safety Research Team, Korean Register(KR)) ;
  • Choungho Choung (System Safety Research Team, Korean Register(KR)) ;
  • Hokeun Kang (Division of Coast Guard Studies, Korea Maritime and Ocean University)
  • 이현용 (한국선급 시스템안전연구팀 ) ;
  • 이상익 (한국선급 시스템안전연구팀 ) ;
  • 정정호 (한국선급 시스템안전연구팀 ) ;
  • 강호근 (국립한국해양대학교 해양경찰학부)
  • Received : 2024.04.23
  • Accepted : 2024.08.29
  • Published : 2024.08.31

Abstract

The International Maritime Organization has adopted a strategy for reducing greenhouse gas emissions from international shipping, with enhanced targets to address ship-induced emissions. The liquid-hydrogen proton-exchange membrane fuel cell is promising for complying with such regulations. In general, ship design must adhere to the prescriptive rules of classification societies. However, increasing environmental regulations are enforcing the introduction of new fuels and systems, with the prescriptive rules lagging. Hence, we devise a method to verify new technologies by combining the hazard and operability study (HAZOP) and layer of protection analysis (LOPA) for a hydrogen fuel gas-supply system. The HAZOP allows us to identify hazardous scenarios, whereas the LOPA enables us to quantitatively complement the qualitative HAZOP results. The existing initiating event frequency and failure-on-demand probability of independent protection layers (IPLs) are identified. To determine the adequacy of the existing IPLs, we compare the estimated current mitigation with a risk-acceptance criterion. Additional IPLs are recommended when required to satisfy the risk criteria. Results show that HAZOP-LOPA can be potentially used to assess novel systems not yet adopted in the maritime sector.

국제해사기구는 국제해운의 온실가스 배출을 줄이기 위한 전략을 채택하였으며, 선박 기인 온실가스 배출을 줄이기 위해 보다 강화된 목표를 설정하고 있다. 액체수소를 기화시켜 연료로 사용하는 고분자 전해질 연료전지는 이러한 규제를 준수하기 위한 유망한 기술 중 하나로 평가받고 있다. 일반적으로 선박시스템 설계는 선급의 규정에 따라야 하지만 환경규제가 강화됨에 따라 새로운 연료와 시스템의 도입이 가속화되고 있으며, 이로 인해 규정개발이 기술의 도입을 따라가지 못하는 경우도 발생하고 있다. 이러한 격차를 해소하기 위해, 본 연구에서는 수소 연료가스공급 시스템을 대상으로 위험요소 및 운전분석 기법(HAZOP)과 보호계층분석 기법(LOPA)을 결합하여 신기술의 안전성을 검증하는 방법을 제시하였다. 먼저 HAZOP을 통해 위험 시나리오를 식별하고, LOPA를 통해 정성적인 HAZOP 결과를 정량적으로 보완하였다. 초기사건의 빈도와 독립보호계층(IPL)들의 작동 요구시 고장 확률(PFD)을 계산하였다. 기존 IPL의 적절성을 결정하기 위해, 예상되는 완화 정도를 가정한 허용기준과 비교하였으며, 필요한 경우, 추가 IPL을 권장하였다. 본 연구를 통해서 HAZOP-LOPA 기법이 조선해양 분야에서 신기술의 안전성을 평가할 수 있는 잠재력을 가지고 있음을 확인하였다.

Keywords

Acknowledgement

The authors thank those who participated in this research and contributed their valuable time to support this study.

References

  1. Aarskog, F. G., O. R. Hansen, T. Stromgren, and O. Ulleberg (2020), Concept risk assessment of a hydrogen driven high speed passenger ferry. Int J Hydrogen Energy. Vol. 45, No. 2, pp. 1359-1372. https://doi.org/10.1016/j.ijhydene.2019.05.128. 
  2. Ahn, J., Y. Noh, T. Joung, Y. Lim, J. Kim, Y. Seo, and D. Chang(2019), Safety integrity level (SIL) determination for a maritime fuel cell system as electric propulsion in accordance with IEC 61511. Int J Hydrogen Energy. Vol. 44, No. 5, pp. 3185-3194. https://doi.org/10.1016/j.ijhydene.2018.12.065. 
  3. AIChE(2015), Guidelines for Initiating Events and Independent Protection Layers. Center for Chemical Process Safety and John Wiley & Sons. 
  4. AIChE(2001), Layer of Protection Analysis: Simplified Process Risk Assessment. Center for Chemical Process Safety and John Wiley & Sons. 
  5. Banick, W. R. and C. Wei(2017), Advanced analysis to supplement HAZOP/LOPA for effective process design. Process Saf Prog. Vol. 36, No. 2, pp. 192-201. https://doi.org/10.1002/prs.11855. 
  6. Berg, T. E. and J. Bakke(2008), Ship-to-ship LNG transfer in arctic waters. Paper presented at the International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Vol. 3, pp. 929-937. https://doi.org/10.1115/OMAE2008-57319. 
  7. Danko, M., J. Janosovsky, J. Labovsky, and L. Jelemensky (2019), Integration of process control protection layer into a simulation-based HAZOP tool. J Loss Prev Process Ind. Vol. 57, pp. 291-303. https://doi.org/10.1016/j.jlp.2018.12.006. 
  8. Dunjo, J., V. Fthenakis, J. A. Vilchez, and J. Arnaldos(2010), Hazard and operability (HAZOP) analysis. A literature review. J Hazard Mater. Vol. 173, No. 1-3, pp. 19-32. https://doi.org/10.1016/j.jhazmat.2009.08.076. 
  9. Essl, H. J., D. Sandholzer, L. Werner, G. Zimmer(2022), Review of the layer of protection analysis results after process safety incidents. Process Saf Prog. Vol. 41, pp. 461-468. https://doi.org/10.1002/prs.12339. 
  10. Faber, J., S. Hanayama, S. Zhang, et al.(2024), Fourth IMO GHG study. Accessed February 19. https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx. 
  11. DSB(2021), Guidelines for quantitative risk analysis of facilities handling hazardous substances. Report for: The Norwegian Directorate for Civil Protection. Accessed February 19, 2024. https://www.dsb.no/contentassets/dbd79a7d06e0473bb2d44ba9760cc4a6/prj11100262033_final_report_rev_2021-2.pdf. 
  12. Hu, J., L. Zhang, Z. Cai, and Y. Wang(2015), An intelligent fault diagnosis system for process plant using a functional HAZOP and DBN integrated methodology. Eng Appl Artif Intell. Vol. 45, pp. 119-135. https://doi.org/10.1016/j.engappai.2015.06.010. 
  13. Kang, J. and L. Guo(2016), HAZOP analysis based on sensitivity evaluation. Saf Sci. Vol. 88, pp. 26-32. https://doi.org/10.1016/j.ssci.2016.04.018. 
  14. Korean Register(2022), Ammonia Outlook Report: Setting Course for a Zero-Carbon Marine Fuel. Accessed February 19, 2024. https://www.krs.co.kr/kor/Brochure/ListView.aspx?MRID=297&URID=909#. 
  15. Korean Register(2023), Methanol as a Marine Fuel. Accessed February 19, 2024. https://www.krs.co.kr/kor/Brochure/ListView.aspx?MRID=297&URID=909#. 
  16. Lee, S. and D. Chang(2014), Safety systems design of VOC recovery process based on HAZOP and LOPA. Process Saf Prog. Vol. 33, pp. 339-344. https://doi.org/10.1002/prs.11662. 
  17. Marhavilas, P. K., M. Filippidis, G. K. Koulinas, D. E. Koulouriotis(2019), The integration of HAZOP study with risk-matrix and the analytical-hierarchy process for identifying critical control-points and prioritizing risks in industry-A case study. J Loss Prev Process Ind. Vol. 62, 103981. https://doi.org/10.1016/j.jlp.2019.103981. 
  18. Peng, L., D. Gao, and Y. Bai(2021), A study on standardization of security evaluation information for chemical processes based on deep learning. Processes 2021, 9, 832. https://doi.org/10.3390/pr9050832. 
  19. Prabana, A. C.(2018), Risk and Economical Assessment of Passenger Ship Retrofitted with Dual Fuel Engine (Doctoral dissertation, Institut Teknologi Sepuluh Nopember). 
  20. Russo, P., A. De Marco, M. Mazzaro, and L. Capobianco (2018), Quantitative risk assessment on a hydrogen refuelling station. Chem Eng Trans. Vol. 67, pp. 739-744. 
  21. The Rondon P&I Club(2018), Reducing the risk of propulsion loss. Operational guidance for preventing blackouts and main engine failures. Accessed February 19, 2024. https://www.londonpandi.com/media/2141/a-bilbroughcom-profiles-ms_profiles-somesh-desktop-bv_propulsionloss_11x16_0912-web.pdf. 
  22. Wang, J., D. Hu, C. Peng, H. Zhi, and L. Wu(2023), Safety assessment through HAZOP LOPA SIL analysis implementation in the DPA demulsifier production process. Process Safety Progress, 42(1), pp. 38-47. 
  23. Wei, C., W. J. Rogers, and M. S. Mannan(2008), Layer of protection analysis for reactive chemical risk assessment. J Hazard Mater. Vol. 159, pp. 19-24. https://doi.org/10.1016/j.jhazmat.2008.06.105.