References
-
Jung, S. H. (2021). A Study on
Using Topic Modeling and Network Analysis. The Korean Language and Literature, (197), 111-144. https://doi.org/10.31889/kll.2021.12.197.111 - Cho, S. Z. & Kang, S. H. (2016). Industrial Applications of Machine Learning (Artificial Intelligence), Industrial Engineering Magazine, 23(2), 34-38.
- Seo, H. J. (2019). A Preliminary Discussion on Policy Decision Making of AI in The Fourth Industrial Revolution. Informatization Policy, 26(3), 1-1. https://doi.org/10.22693/NIAIP.2019.26.3.003
- Baek, S. W. (2023). Natural Language Processing in Construction Management. KSCE 2023 CONVENTION, 549-550.
- Park, K. M. & Hwang, K. B. (2011). A Bio-Text Mining System Based on Natural Language Processing. Journal of KIISE : Computing Practices and Letters, 17(4), 205-213.
- Choi, C. H., Park, K. H., Park, H. K., Lee, M. J., Kim. J. S. & Kim. H. S. (2017). Development of Heavy Rain Damage Prediction Function for Public Facility Using Machine Learning. Journal of Korean Society of Hazard Mitigation, 17(6), 443-450. https://doi.org/10.9798/KOSHAM.2017.17.6.443
- Hong, J. W., Kim, Y. I., Park, S. J., Kim, B. C., Eom, I. K., Hwang, M. W. et al. (2009). Data mining Algorithms for the Development of Sasang Type Diagnosis. Journal of Physiology & Pathology in Korean Medicine, 23(6), 1234-1240.
- Lee, J. H. & Lee, H. H. (2019). Selecting Sasang-Type classification model using machine learning and designing the service flow. Journal of Digital Contents Society, 20(2), 321-327. http://dx.doi.org/10.9728/dcs.2019.20.2.321
- Lee, H. R. & Lee, J. H. (2021). A Study on the Development of Diagnostic Tools for Sasang Constitutional Patterns. Journal of Sasang Constitutional Medicine, 33(3), 95-126. https://doi.org/10.7730/JSCM.2021.33.3.95
- Kim, G. W. (2002). Relation of Sasang Constitution diseases and Mind-Body Medicine (Sasang Constitutinal Medicine from the psychiatry point of view). Journal of Oriental Neuropsychiatry, 13(2), 11-19.
- Craddock, N. & Mynors-Wallis, L. (2014). Psychiatric diagnosis: impersonal, imperfect and important. Br J Psychiatry, 204(2), 93-95. https://doi.org/10.1192/bjp.bp.113.133090
- Srivastava A, & Sahami M. (2009). Text mining : Classification, Clustering, and Applications. CRC Press.
- Park, S. E. & Gang, J. Y. Python Text Mining Complete Guide. 1st Edition. Gyeonggi : Wikibooks. 2022:322
- Seo, D. H. Grab It! Text Mining with Python. 1st Edition. Seoul: bjpublic. 2019:203
- Park, D. H. & Cho, M, H. (2022). Identifying Fine Dining Restaurant Consumers' Perceptions: A Pre- and During COVID-19 Comparison using Big Data. Korean Journal of Hospitality & Tourism, 31(4), 17-32. https://doi.org/10.24992/KJHT.2022.6.31.04.17
- Seo, D. H. (2019) Grab It! Text Mining with Python. 1st Edition. Seoul:bjpublic. 203
- Racz A, Bajusz D, Heberger K. (2021). Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification. Molecules, 26(4), 1111.
- Department of Sasang Constitutional Medicine, College of Korean Medicine. (2004). Sasang constitutional medicine. Jipmoon. 164-165, 643, 729-730.
- Park, H. S., Joo, J. C., Kim. J. H. & Kim. K. Y. (2002). A Study on clinical application of the QSCCII(Questionnaire for the Sasang Constitution ClassificationII). Journal of Sasang Constitutional Medicine, 14(2), 35-44.
- Baek, Y. H., Kim, H. S., Lee, S. W. & Jang, E. S. (2014). The Concordance and Validity Assessment of Diagnosis for the Expert in Sasang Constitution. Journal of Sasang constitutional medicine, 26(3), 295-303. https://doi.org/10.7730/JSCM.2014.26.3.295
- Lee, S. G., Kwak, C. K., Lee, E. J., Ko, B. H. & Song, I. B. (2003). The Study of the Upgrade of QSCCII(II)-A Study on the re-validity of QSCCII-. Journal of Sasang constitutional medicine, 15(1), 39-49.
- Kang, M. S., Oh, J. W., Lee, H. R. & Lee, J. H. (2019). Patient Group Study to Improve the Accuracy of QSCC II+. Journal of Sasang Constitutional Medicine, 31(3), 48-65. https://doi.org/10.7730/JSCM.2019.31.3.48
- Do, J. H., Nam, J. H., Jang, E. S., Jang. J. S., Kim, J. W., Kim, Y. S. et al. (2013). Comparison between Diagnostic Results of the Sasang Constitutional Analysis Tool (SCAT) and a Sasang Constitution Expert. Journal of Sasang constitutional medicine, 25(3), 158-166. https://doi.org/10.7730/JSCM.2013.25.3.158
- Hwang, D. S., Cho, J. H., Lee, C. H., Jang, J. B. & Lee, K. S. (2006). A Study on Reproducibility of Responses to the Questionnaire for Sasang Constitution Classification II (QSCCII). Journal of Korean Medicine, 27(3), 145-150.
- Kim, J. W., Sul, Y. K., Choi, J. J., Kwon, S. D., Kim, K. K. & Lee, Y. T. (2007). Comparative Study of Diagnostic Accuracy Rate by Sasang Constitutions on Measurement Method of Body Shape. Journal of physiology & pathology in Korean Medicine, 21(1), 338-346.
- Lee, E. J., Song, K. B., Choi, H. S., Yoo, J. H., Kwak, C. K., Sohn, E. H. et al. (2005). Pilot Study on the classification for sasangin by the voice analysis. Journal of Korean Oriental Medicine, 26(1), 93-102.
- Lee, J.H. (2022). Korean Medicine Clinical Practice Guideline for Sasang(Four) constitutional medicine patterns. Korea:The Society of Sasang Constitutional Medicine.
- Kim, M. J & Lee, S. J. (2018). Study of health characteristics of female college students according to sasang constitution and factors affecting BMI. Journal of Sasang constitutional medicine, 30(3), 48-61. https://doi.org/10.7730/JSCM.2018.30.3.48
- Kim, E. Y. & Kim, J. W. (2004). A Clinical study on the Sasang Constitution and Obesity. Journal of Sasang constitutional medicine, 16(1), 100-111.
- Hong, S. C., Lee, S. K., Lee, E. J., Han, G. H., Chou, Y. J., Choi, C. H. et al. (1998). A Study on the morphologic characteristics of each constitution's trunk. Journal of Sasang constitutional medicine, 10(1), 101-142.
- Choi, J. S. & Kim, K. Y. (1998). A Study on Disease and Medical Theory of Soyangin Bisoohan-pyohanbyung-theory. Journal of Sasang constitutional medicine, 10(2), 61-110.
- Park, S. E. (2021). Analysis of the Status of Natural Language Processing Technology Based on Deep Learning. The Korea Journal of BigData, 6(1), 63-81. https://doi.org/10.36498/kbigdt.2021.6.1.63