DOI QR코드

DOI QR Code

System reliability assessment of hanger structure considering corrosion-fatigue coupling effect

  • Yang Ding (Key Laboratory of Transport Industry of Bridge Detection Reinforcement Technology, Chang'an University) ;
  • Chao-Dong Guan (Department of Civil Engineering, Hangzhou City University) ;
  • Jian Zhou (Department of Civil Engineering, Hangzhou City University) ;
  • Tian-Yun Chu (Jiaxing Tiankun Construction Engineering Design Co., Ltd.) ;
  • Xue-Song Zhang (State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University)
  • 투고 : 2023.11.23
  • 심사 : 2024.08.15
  • 발행 : 2024.10.25

초록

The bridge hanger is exposed to cyclic loads, such as wind and vehicle loads, which can induce fatigue failure, significantly reducing its operational lifespan. Additionally, the hanger is prone to corrosion throughout transportation, construction, and operation. Although corrosion fatigue curves are typically derived from individual steel wire experiments, the bridge hanger comprises multiple parallel steel wires. Consequently, a corrosion fatigue curve based on a single wire may not accurately portray the hanger's longevity, and data solely at the component level may not encompass the overall system-level condition. To tackle this challenge, this paper introduces a series system-level reliability assessment framework based on dynamic Bayesian Networks, accounting for the interdependence between variables. Specifically, the framework encompasses a time-varying reliability model featuring three random parameters (corroded number, equivalent structural stress, and the total cycles number of wires) and leverages seven numerical simulation studies to investigate the impacts of these random parameters on system reliability.

키워드

과제정보

The work described in this paper was jointly supported by the Fundamental Research Funds for the Central Universities, CHD (Grant No. JQJJ202404), the Ministry of education of Humanities and Social Science Project (Grant No. 23YJCZH037), the Key Laboratory of C&PC Structures, Ministry of Education (Grant No. CPCSME2024-01), the State Key Laboratory of Mountain Bridge and Tunnel Engineering (Grant No. SKLBT-2210), the National Statistical Research Program (Grant No. 2024LZ001), the Educational Science Planning Project of Zhejiang Province (Grant No. 2023SCG222), and the Scientific Research Project of Zhejiang Provincial Department of Education (Grant No. Y202248682).

참고문헌

  1. Aeran, A., Acosta, R., Siriwardane, S.C., Starke, P., Mikkelsen, O. and Langen, I. (2020), "A nonlinear fatigue damage model: comparison with experimental damage evolution of s355 (sae 1020) structural steel and application to offshore jacket structures", Int. J. Fatigue, 135(6), 105568. https://doi.org/10.1016/j.ijfatigue.2020.105568.
  2. Akram, G., Mohammad, R.G. and Babak, D. (2018), "Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate", Steel Comp. Struct., 28(2), 139-147. https://doi.org/10.12989/scs.2018.28.2.139.
  3. Alex, K., Oswaldo, M.N., Thomas, Y., Wim C., Johan, M. and Bruno, C. (2017), "A two-dimension dynamic Bayesian Network for large-scale degradation modeling with an application to a bridges network", Comput.-Aided Civ. Inf., 32(8), 641-656. https://doi.org/10.1111/mice.12286.
  4. AliIhsan, C . and Yasin O.O. (2023), "Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder", Steel Comp. Struct., 46(5), 689-707. https://doi.org/10.12989/scs.2023.46.5.689.
  5. Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M.I. (2003), "An introduction to MCMC for machine learning", Mach. Learn., 50(1), 5-43. https://doi.org/10.1023/A:1020281327116.
  6. Baptista, C., Reis, A. and Nussbaumer, A. (2017), "Probabilistic SN curves for constant and variable amplitude", Int. J. Fatigue, 101(2), 312-327. https://doi.org/10.1016/j.ijfatigue.2017.01.022.
  7. Bayes, T. (1763), "An essay towards solving a problem in the doctrine of chances", Philos. Transactions Royal Soc. London, 53, 370-418.
  8. Byun, J.E. and Song, J. (2021), "A general framework of bayesian network for system reliability analysis using junction tree", Reliab. Eng. Syst. Saf., 216, 107953. https://doi.org/10.1016/j.ress.2021.107952.
  9. Cai, B., Liu, Y., Liu, Z., Chang, Y. and Jiang, L. (2020), "Application of bayesian networks in reliability evaluation", Bayes. Net. Reliab. Eng., 15(4), 2146-2157. https://doi.org/10.1109/TII.2018.2858281.
  10. Chen, Y., Jiang, Z.W., Xu, Q. and Ren, C. (2023), "Experimental study on fatigue behavior of innovative hollow composite bridge slabs", Steel Comp. Struct., 46(6), 745-757. https://doi.org/ 10.12989/scs.2023.46.6.745.
  11. Cui, C., Chen, A. and Ma, R. (2020), "An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment", Int. J. Fatigue, 135(6), 105540. https://doi.org/10.1016/j.ijfatigue.2020.105540.
  12. Deng, Y., Li, S. and Chen, Z. (2019), "Unsteady theoretical analysis on the wake-induced vibration of suspension bridge hangers", J. Bridge Eng., 24(2), 04018113. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001339.
  13. Ding, Y., Hang, D., Wei, Y.J., Zhang, X.L., Ma, S.Y., Liu, Z.X., Zhou, S.X. and Han, Z. (2023), "Settlement prediction of existing metro induced by new metro construction with machine learning based on SHM data: A comparative study", J. Civ. Struct. Health Monit., 13(6-7), 1447-1457. https://doi.org/10.1007/s13349-023-00714-4.
  14. Ding, Y., Wei, Y.J., Xi, P.S., Ang, P.P. and Han, Z. (2024), "A long-term tunnel settlement prediction model based on BO-GPBE with SHM data", Smart Struct. Syst., 33, 17-26. https://doi.org/10.12989/sss.2024.33.1.017.
  15. Ding, Y., Ye, X.W. and Guo, Y. (2023), "A multistep direct and indirect strategy for predicting wind direction based on the EMD-LSTM model", Struct. Control Health Monit., 2023(1), 4950487. https://doi.org/10.1155/2023/4950487.
  16. Ding, Y., Ye, X.W. and Guo, Y. (2023), "Copula-based JPDF of wind speed, wind direction, wind angle, and temperature with SHM data", Probab. Eng. Mech., 73, 103483. https://doi.org/10.1016/j.probengmech.2023.103483.
  17. Ding, Y., Ye, X.W. and Guo, Y. (2023), "Wind load assessment with the JPDF of wind speed and direction based on SHM data", Struct., 47(1), 2074-2080. https://doi.org/10.1016/j.istruc.2022.12.028.
  18. Ding, Y., Ye, X.W., Guo, Y., Zhang, R. and Ma, Z. (2023), "Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven", Probab. Eng. Mech., 73, 103475. https://doi.org/10.1016/j.probengmech.2023.103475.
  19. Ding, Y., Ye, X.W., Su, Y.H. and Zheng, X.L. (2023), "A framework of cable wire failure mode deduction based on Bayesian network", Struct., 57, 104996. https://doi.org/10.1016/j.istruc.2023.104996.
  20. Ding, Y., Ye, X.W., Zhang, H. and Zhang, X.S. (2024), "Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application", Steel Compos. Struct., 50(3), 363-374. https://doi.org/10.12989/scs.2024.50.3.363.
  21. Gan, J., Liu, X., Wang, Z. and Wu, W. (2021), "Experimental study on the fatigue damage of designed t-type specimen with high-low frequency superimposed loading", Int. J. Fatigue, 143, 105985. https://doi.org/10.1016/j.ijfatigue.2020.105985.
  22. Gehl, P. and D'Ayala, D. (2016), "Development of bayesian networks for the multi-hazard fragility assessment of bridge systems", Struct. Saf., 60, 37-46. https://doi.org/10.1016/j.strusafe.2016.01.006.
  23. Geyer, C.J. (1992), "Practical markov chain monte carlo", Statist. Sci., 7(4), 473-483.
  24. Guo, Q., Xing, Y., Lei, H., Jiao, J. and Chen, Q. (2020), "Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint", Steel Comp. Struct., 36(1), 75. https://doi.org/ 10.12989/scs.2020.36.1.075.
  25. Guo, Y., Zhong, M., Gao, C., Wang, H., Liang, X. and Yi, H. (2021), "A discrete-time bayesian network approach for reliability analysis of dynamic systems with common cause failures", Reliab. Eng. Syst. Saf., 216. https://doi.org/10.1016/j.ress.2021.108028.
  26. Gupta, S. and Manohar, C.S. (2004), "An improved response surface method for the determination of failure probability and importance measures", Struct. Saf., 26(2), 123-139. https://doi.org/10.1016/S0167-4730(03)00021-3.
  27. Han, Q., Yang, G., Xu, J. and Wang, Y. (2017), "Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM", Steel Comp. Struct., 25, 57-65. https://doi.org/10.12989/scs.2017.25.1.057.
  28. Hao, P., Ma, R., Wang, Y., Feng, S., Wang, B. and Li, G. (2019), "An augmented step size adjustment method for the performance measure approach: Toward general structural reliability-based design optimization", Struct. Saf., 80, 32-45. https://doi.org/10.1016/j.strusafe.2019.04.001.
  29. Iordachescu, M., Valiente, A. and Abreu, M.D. (2021), "Damage tolerance and failure analysis of tie-down cables after long service life in a cable-stayed bridge", Eng. Failure Anal., 125(1), 105437. https://doi.org/10.1016/j.engfailanal.2021.105437.
  30. Jiang, C., Wu, C. and Jiang, X. (2018), "Experimental study on fatigue performance of corroded high-strength steel wires used in bridges", Constr. Build. Mater., 187(10), 681-690. https://doi.org/10.1016/j.conbuildmat.2018.07.249.
  31. Kaymaz, I. (2005), "Application of kriging method to structural reliability problems", Struct. Saf., 27(2), 133-151. https://doi.org/10.1016/j.strusafe.2004.09.001.
  32. Lan, C., Yang, X., Liu, C., Hui, L. and Spencer, B.F. (2018), "Fatigue life prediction for parallel-wire stay cables considering corrosion effects", Int. J. Fatigue, 114(9), 81-91. https://doi.org/10.1016/j.ijfatigue.2018.05.020.
  33. Li, R., Miao, C., Feng, Z. and Wei, T. (2021), "Experimental study on the fatigue behavior of corroded steel wire", J. Constr. Steel Res., 176, 106375. https://doi.org/10.1016/j.jcsr.2020.106375.
  34. Luo, Y., Zhan, K. and Li, A. (2009), "Structural reliability assessment based on probability and convex set mixed model", Comp. Struct., 87(21), 1408-1415. https://doi.org/10.1016/j.compstruc.2009.06.001.
  35. Mahadevan, S., Zhang, R. and Smith, N. (2001), "Bayesian Networks for system reliability reassessment", Struct. Saf., 23(3), 231-251. https://doi.org/10.1016/S0167-4730(01)00017-0.
  36. Miao, C., Li, R. and Yu, J. (2019), "Effects of characteristic parameters of corrosion pits on the fatigue life of the steel wires", J. Constr. Steel Res., 168, 105879. https://doi.org/10.1016/j.jcsr.2019.105879.
  37. Motlagha, H.R.E. and Rahai, A. (2022), "Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load", Steel Comp. Struct., 43(6), 809-819. https://doi.org/ 10.12989/scs.2022.43.6.809.
  38. Movaghar, M. and Mohammadzadeh, S. (2020), "Bayesian Monte Carlo approach for developing stochastic railway track degradation model using expert-based priors", Struct. Inf. Eng., 18(2), 145-166. https://doi.org/10.1080/15732479.2020.1836001.
  39. Nabizadeh, A., Al-Barqawi, M.O. and Tabatabai, H. (2021), "Probabilistic models for fatigue resistance of seven-wire prestressing strands and stay cables", J. Bridge Eng., 26(10), 04021070. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001768.
  40. Nakamura, S. and Suzumura, K. (2012), "Experimental study on repair methods of corroded bridge cables", J. Bridge Eng., 66(4), 720-727. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000299.
  41. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng., 136(12), 1563-1573.
  42. Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems, Morgan Kauffman Publishers, San Francisco, CA.
  43. Pitta, S., Rojas, J.I., Roure, F., Crespo, D. and Wahab, M.A. (2022), "An experimental and numerical investigation on fatigue of composite and metal aircraft structures", Steel Comp. Struct., 43(1), 19-30. https://doi.org/10.12989/scs.2022.43.1.019.
  44. Shu, J., Honfi, D., Plos, M., Zandi, K. and Magnusson, J. (2019), "Assessment of a cantilever bridge deck slab using multi-level assessment strategy and decision support framework", Eng. Struct., 200(12), 109666. https://doi.org/10.1016/j.engstruct.2019.109666.
  45. Straub, D. and Kiureghian, A.D. (2012), "Bayesian network enhanced with structural reliability methods: Methodology", J. Eng. Mech., 136(10), 1259-1270. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000173.
  46. Tran, T.B. and Emilio, B.A. (2018), "A bayesian network framework for statistical characterisation of model parameters from accelerated tests: Application to chloride ingress into concrete", Struct. Inf. Eng., 1-15. https://doi.org/10.1080/15732479.2017.1377737.
  47. Turmo, J. and Luco, J.E. (2010), "Effect of hanger flexibility on dynamic response of suspension bridges", J. Eng. Mech., 136(12), 1444-1459. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000185.
  48. Wang, G., Ma, Y., Wang, L. and Zhang, J. (2021), "Experimental study and residual fatigue life assessment of corroded high-tensile steel wires using 3d scanning technology", Eng. Failure Anal., 124(5), 105335. https://doi.org/10.1016/j.engfailanal.2021.105335.
  49. Wang, Q., Wang, X. and Zhang, N. (2021), "Investigation of the fatigue damage mechanism of inconel 617 at elevated temperatures obtained by in situ sem fatigue tests", Int. J. Fatigue, 153(10-11), 106518. https://doi.org/10.1016/j.ijfatigue.2021.106518.
  50. Wang, S., Zhang, D., Kai, C., Xu, L., and Ge, S. (2014), "Corrosion fatigue behaviors of steel wires used in coalmine", Mater. Design, 53(1), 58-64. https://doi.org/10.1016/j.matdes.2013.06.059.
  51. Wang, Y.D., Shi, T., Nie, B., Wang, H. and Xu, S.H. (2021), "Seismic performance of steel columns corroded in general atmosphere", Steel Comp. Struct., 40(2), 217-241. https://doi.org/ 10.12989/scs.2021.40.2.217.
  52. Weber, P. and Jouffe, L. (2006), "Complex system reliability modelling with dynamic object oriented bayesian networks (DOOBN)", Reliab. Eng. Syst. Saf., 91(2), 149-162. https://doi.org/10.1016/j.ress.2005.03.006.
  53. Wilson, A.G. and Huzurbazar, A.V. (2007), "Bayesian networks for multilevel system reliability", Reliab. Eng. Syst. Saf., 92(10), 1413-1420. https://doi.org/10.1016/j.ress.2006.09.003.
  54. Wirsching, P.H. (1984), "Fatigue reliability for offshore structures", J. Struct. Eng., 110(10), 2340-2356. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2340).
  55. Wu, G., Qiu, W. and Wu, T. (2019), "Nonlinear dynamic analysis of the self-anchored suspension bridge subjected to sudden breakage of a hanger", Eng. Failure Anal., 97, 701-717. https://doi.org/10.1016/j.engfailanal.2019.01.028.
  56. Xiang, S., He, Y., Shi, W., Ji, X. M., Tan, Y., Liu, J. and Ballinger, R.G. (2018), "Chloride-induced corrosion behavior of cold-drawn pearlitic steel wires", Corros. Sci., 141(8), 221-229. https://doi.org/10.1016/j.corsci.2018.07.015.
  57. Xu, C., Su, Q. and Masuya, H. (2017), "Static and fatigue performance of stud shear connector in steel fiber reinforced concrete", Steel Comp. Struct., 24, 467-479. https://doi.org/10.12989/scs.2017.24.4.467.
  58. Xue, S., Shen, R., Chen, W., and Miao, R. (2020), "Corrosion fatigue failure analysis and service life prediction of high strength steel wire", Eng. Failure Anal., 110, 104440. https://doi.org/10.1016/j.engfailanal.2020.104440.
  59. Yuan, S., Chen, W., Yang, F., He, T. and Liu, G. (2019), "Reinforcement analysis of rigid hangers for existing old arch bridges: a case study of ling bridge", Int. J. Steel Struct., 19(6), 1743-1754. https://doi.org/10.1007/s13296-019-00242-2.
  60. Zhang, W., and Yuan, H. (2014), "Corrosion fatigue effects on life estimation of deteriorated bridges under vehicle impacts", Eng. Struct., 71, 128-136. https://doi.org/10.1016/j.engstruct.2014.04.004.
  61. Zhang, W.M., Li, T., Shi, L.Y., Liu, Z. and Qian, K.R. (2019), "An iterative calculation method for hanger tensions and the cable shape of a suspension bridge based on the catenary theory and finite element method", Adv. Struc. Eng., 22(7), 1566-1578. https://doi.org/10.1177/1369433218820243.
  62. Zhang, W.M., Shi, L.Y., Li, L. and Liu, Z. (2018), "Methods to correct unstrained hanger lengths and cable clamps' installation positions in suspension bridges", Eng. Struct., 171(9), 202-213. https://doi.org/10.1016/j.engstruct.2018.05.039.
  63. Zhao, Z., Haldar, A. and Breen, F.L. (1994), "Fatigue-reliability evaluation of steel bridges", J. Struct. Eng., 120(5), 1608-1623. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000250.
  64. Zheng, X.L., Xie, X., Li, X.Z. and Tang, Z.Z. (2018), "Fatigue crack propagation characteristics of high-tensile steel wires for bridge cables", Fatigue Fract. Eng. Mater. Struct., 42(1), 256-266. https://doi.org/10.1111/ffe.12901.