• 제목/요약/키워드: system-level assessment reliability

검색결과 123건 처리시간 0.029초

A Study on the Assessment and Application of Outage Cost for Power System Expansion Planning (계통계획 수위용 공급지장비의 추정방법 및 이의 응용에 관한 연구)

  • 최재석;강성록;트룬틴트란;김호용;김슬기
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제53권5호
    • /
    • pp.285-295
    • /
    • 2004
  • The outage cost assessment has an important position for determination of the optimal level or optimal range of reliability for power system expansion planning. Establishing the worth of service reliability is a very difficult and subjective task. While the utility cost(reliability cost) will generally increase as consumers are provided with higher reliability, the consumer costs(reliability worth) associated with supply interruptions will decrease as the reliability increases. The total costs to society are the sum of these two individual costs and the optimum or target level of reliability is achieved at minimum point of the total cost curve. This paper addresses the role, need and assessment algorithms and methodologies of the outage cost in power system expansion planning. In a case study, the outage cost has been assessed using macro approach for our country 15years(1986-200l) in the case study. Additionally, determination processing of optimum reliability level is presented in another case study with the five buses MRBTS.

System reliability assessment of hanger structure considering corrosion-fatigue coupling effect

  • Yang Ding;Chao-Dong Guan;Jian Zhou;Tian-Yun Chu;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • 제53권2호
    • /
    • pp.145-153
    • /
    • 2024
  • The bridge hanger is exposed to cyclic loads, such as wind and vehicle loads, which can induce fatigue failure, significantly reducing its operational lifespan. Additionally, the hanger is prone to corrosion throughout transportation, construction, and operation. Although corrosion fatigue curves are typically derived from individual steel wire experiments, the bridge hanger comprises multiple parallel steel wires. Consequently, a corrosion fatigue curve based on a single wire may not accurately portray the hanger's longevity, and data solely at the component level may not encompass the overall system-level condition. To tackle this challenge, this paper introduces a series system-level reliability assessment framework based on dynamic Bayesian Networks, accounting for the interdependence between variables. Specifically, the framework encompasses a time-varying reliability model featuring three random parameters (corroded number, equivalent structural stress, and the total cycles number of wires) and leverages seven numerical simulation studies to investigate the impacts of these random parameters on system reliability.

System Reliability-Based Safety and Capacity Evaluation of Cable-Stayed Bridges (쳬계신뢰성에 기초한 사장교의 안전도 및 내하력 평가)

  • 조효남;이승재;임종권;김보헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.105-112
    • /
    • 1996
  • A practical approach for the assessment of system reliability-based safety and load carring capacity under vehicle traffics is proposed for the realistic evaluation of safety and rating of cable-stayed bridges. A partial event tree analysis model incorporating major critical failure paths is suggested as a practical tool for the system reliability analysis and system reliability-based capacity rating. The proposed approach for the system reliability analysis and system reliability-based rating is applied to the safety assessment of the Jindo Bridge which is one of two existing cable-stayed bridges in Korea. The results of analyses at the system level based on the system reliability are compared with those at the element level.

  • PDF

Reliability Evaluation of Power System Operations Considering Time-Varying Features of Components

  • Hu, Bo;Zheng, Ying;Yang, Hejun;Xia, Yun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1422-1431
    • /
    • 2015
  • The reliability of power system components can be affected by a numbers of factors such as the health level of components, external environment and operation environment of power systems. These factors also affect the electrical parameters of power system components for example the thermal capacity of a transmission element. The relationship of component reliability and power system is, therefore, a complex nonlinear function related to the above-mentioned factors. Traditional approaches for reliability assessment of power systems do not take the influence of these factors into account. The assessment results could not, therefore, reflect the short-term trend of the system reliability performance considering the influence of the key factors and provide the system dispatchers with enough information to make decent operational decisions. This paper discusses some of these important operational issues from the perspective of power system reliability. The discussions include operational reliability of power systems, reliability influence models for main performance parameters of components, time-varying reliability models of components, and a reliability assessment algorithm for power system operations considering the time-varying characteristic of various parameters. The significance of these discussions and applications of the proposed techniques are illustrated by case study results using the IEEE-RTS.

Structural reliability analysis of offshore structure at cold region (저온해역에서의 해양구조물에 대한 구조신뢰성 해석)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.8-19
    • /
    • 1997
  • In this study an adequate type of offshore structure at the Sakhalin region as cold region is proposed and its structural design results are presented based on the reliability analysis. Structural safety assessment has been carried out for the proposed offshore structure at the Sakhalin area as designed by the reliability method. And a rational design procedure is presented based on the reliability analysis. Followings are drawn through the present study : - Four colum TLP structure is proposed as an adequate offshore structure type at the cold region like the Sakhalin region and the reliability-based structural design results are presented. It is seen that the proposed type is a more adequate and economic than the fixed type. - Safety assessment of the proposed structure applying the extended incremental load method is performed. - Referring the allowable safety level for offshore structures it has been found present TLP structure has sufficient structural safety at the system level as well as at the component level.

  • PDF

Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

  • Bucknor, Matthew;Grabaskas, David;Brunett, Acacia J.;Grelle, Austin
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.360-372
    • /
    • 2017
  • Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

A Risk Impact Assessment According to the Reliability Improvement of the Emergency Power Supply System of a Nuclear Power Plant (원자력발전소 비상전력계통 강화 방안에 따른 리스크 영향 평가)

  • Jeon, Ho-Jun
    • Journal of the Korean Society of Safety
    • /
    • 제27권5호
    • /
    • pp.224-228
    • /
    • 2012
  • According to the results of Probabilistic Safety Assessment(PSA) for a Nuclear Power Plant(NPP), an Emergency Power Supply(EPS) system has been considered as one of the most important safety system. Especially, the interests in the reliability of the EPS system have been increased after the severe accidents of Fukushima Daiichi. Firstly, we performed the risk assessment and the importance analysis of the EPS system based on the PSA models of the reference plant, which is the Korean standard NPP type. Considering a portable Diesel Generator(DG) system as the reliability reinforcement of the EPS system, we modified the PSA models and performed the risk impact assessment and the importance analysis. Although the reliability of the potable DG could be about 20% of the reliability of the alternative AC DG, we identified that Core Damage Frequency(CDF) was decreased by at least 4.6%. In addition, the risk impacts due to the unavailability of the EPS system on CDF were decreased.

The Level of Awareness and Practice in Prehospital Emergency Patient Assessment and Emergency Care of Paramedic in Fire Station (1급 응급구조사의 병원 전 응급환자평가와 응급처치시행에 대한 인식과 실천정도)

  • Kang, Yong-Ju;Choi, En-Sook
    • The Korean Journal of Emergency Medical Services
    • /
    • 제15권2호
    • /
    • pp.67-84
    • /
    • 2011
  • Purpose: The aim of this study is to present the basic data for qualitative improvement of emergency care for emergency patient by paramedic in fire station by understanding the level of awareness and practice in prehospital and transfer step, and understanding the level of emergency care and improvement of clinical knowledge through hospital clinical training. Methods: The researchers explained the objective for 143 persons who completed hospital clinical training from June 2nd, 2006 to October 23rd, 2009 among paramedic in fire station. The questionnaire in this research consisted of 80 questions. In the reliability for the awareness of emergency patient assessment, cronbach's $\alpha$ was 0.95, and in the reliability for emergency care fulfillment, cronbach's $\alpha$ was 0.93. reliability for clinical knowledge improvement is cronbach's $\alpha=.95$, and reliability for emergency care fulfillment is cronbach's $\alpha=.82$. Collected data was analyzed through SPSS 18.0 statistics program for frequency, percentage, average, standard deviation, Paired t-test, t-test, Correlation Coefficient, and internal consistency reliability was analyzed by cronbach's $\alpha$. Results: 1) The paramedic awareness and practice difference for emergency patient is statistically signification for general patient assessment(t=14.159, p=.000), trauma patient assessment(t=11.288, p=.000), internal medicine patient assessment(t=10.898, p=.000), and it shows the level of practice is lower than the level of awareness. 2) The paramedic difference between the level of awareness and practice according to whether or not they have clinical career is not signification on awareness(t=3.119, p=.125), and is high on practice(t=3.119, p=.002). 3) The correlation between paramedic awareness and the level of practice shows positive correlation(r=.61, p=.000). The higher the awareness of emergency patient assessment is, the higher the level of practice is. 4) The difference between paramedic clinical knowledge improvement and the level of emergency care practice is statistically significant(t=3.351, p=.001). 5) 89.6%(128 persons) of paramedic replied hospital clinical training experiences are helpful for field activity. 92.3%(133 persons) replied they apply well for clinical knowledge learned during hospital clinical training and emergency care skills in the field. Conclusion: Paramedic in fire station must evaluate the patient's initial assessment and activate the transfer system to the emergency department. It is necessary to develop and implement the effective education program continuously. The education program should systemize currently operated hospital clinical training. emergency disease and symptoms emergency care method, and practice mainly skill education should be progressed. In the prehospital and transfer management, high quality of medical assessment is required to the emergency medical service system. Medical direction from the doctors can feedback the paramedic continuously and continuing education must be provided to the paramedic in fire station.

A Case Study of Reliability Assessment of CMC in Hydraulic Clutch System with Field Warranty Data (보증수리자료를 활용한 유압클러치시스템의 클러치마스터실린더 신뢰성 분석 사례연구)

  • Lee, Sang Cheon;Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제36권3호
    • /
    • pp.1-7
    • /
    • 2013
  • This paper is a case study of reliability assessment with field warranty data of Clutch Master Cylinder (CMC) in hydraulic clutch system. We estimate lifetime distribution using field warranty data which contain much useful information for understanding reliability of the system in the real-world environments. However, the estimated parameters are far from existing reference values, which seems to be caused right censored field warranty data. To modify the parameters, we use the information of the durability test which is performed to verify that the lifetime of the item meets the required level. After that, we can observe that the modified parameters are closer to the existing reference values. This case study shows a possible idea to supplement lack of right censored field warranty data and its applicability.

A system model for reliability assessment of smart structural systems

  • Hassan, Maguid H.M.
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.455-468
    • /
    • 2006
  • Smart structural systems are defined as ones that demonstrate the ability to modify their characteristics and/or properties in order to respond favorably to unexpected severe loading conditions. The performance of such a task requires a set of additional components to be integrated within such systems. These components belong to three major categories, sensors, processors and actuators. It is wellknown that all structural systems entail some level of uncertainty, because of their extremely complex nature, lack of complete information, simplifications and modeling. Similarly, sensors, processors and actuators are expected to reflect a similar uncertain behavior. As it is imperative to be able to evaluate the impact of such components on the behavior of the system, it is as important to ensure, or at least evaluate, the reliability of such components. In this paper, a system model for reliability assessment of smart structural systems is outlined. The presented model is considered a necessary first step in the development of a reliability assessment algorithm for smart structural systems. The system model outlines the basic components of the system, in addition to, performance functions and inter-relations among individual components. A fault tree model is developed in order to aggregate the individual underlying component reliabilities into an overall system reliability measure. Identification of appropriate limit states for all underlying components are beyond the scope of this paper. However, it is the objective of this paper to set up the necessary framework for identifying such limit states. A sample model for a three-story single bay smart rigid frame, is developed in order to demonstrate the proposed framework.