DOI QR코드

DOI QR Code

Dosimetric Evaluations of HyperArc and RapidArc in Stereotactic Radiosurgery for a Single Brain Metastasis

  • So-Yeon Park (Department of Radiation Oncology, Veterans Health Service Medical Center) ;
  • Noorie Choi (Department of Radiation Oncology, Veterans Health Service Medical Center) ;
  • Na Young Jang (Department of Radiation Oncology, Veterans Health Service Medical Center)
  • Received : 2024.02.21
  • Accepted : 2024.03.25
  • Published : 2024.06.30

Abstract

Purpose: This study assessed and compared the dosimetric performance of HyperArc and RapidArc in stereotactic radiosurgery (SRS) for a single brain metastasis. Methods: Twenty patients with intracranial brain metastases, each presenting a distinct target volume, were retrospectively selected. Subsequently, volumetric modulated arc therapy (VMAT) plans were designed using RapidArc (VMATRA) and HyperArc (VMATHA) for each patient. For planning comparisons, dose-volumetric histogram (DVH) parameters for planning target volumes (PTVs) and normal brain regions were computed across all VMAT plans. Subsequently, their total monitor units (MUs), total beam-on times, and modulation complexity scores for the VMAT (MCSv) were compared. A statistical test was used to evaluate the dosimetric disparities in the DVH parameters, total MUs, total beam-on times, and MCSv between the VMATHA and VMATRA plans. Results: For the PTVs, VMATHA presented a higher homogeneity index (HI) than VMATRA. Moreover, VMATHA presented significantly smaller gradient index (GI) values (P<0.001) than VMATRA. Thus, VMATHA demonstrated better performance in the DVH parameters for the PTV than VMATRA. For normal brain tissues, VMATHA presented lower volume receiving 50% of the prescription dose and V2Gy to the normal brain tissues than VMATRA (P<0.0001). While the total MUs required for VMATHA was significantly higher than those for VMATRA, the total beam-on time for VMATHA was superior to that for VMATRA. Conclusions: Thus, VMATHA exhibited superior performance in achieving rapid dose fall-offs (as indicated by the GI) and a higher HI at the PTV compared to VMATRA in brain SRS. This advancement positions HyperArc as a significant development in the field of radiation therapy, offering optimized treatment outcomes for brain SRS.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00253604).

References

  1. Sayan M, Mustafayev TZ, Balmuk A, Mamidanna S, Kefelioglu ESS, Gungor G, et al. Management of symptomatic radiation necrosis after stereotactic radiosurgery and clinical factors for treatment response. Radiat Oncol J. 2020;38:176-180. 
  2. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102:316-319. 
  3. Sayan M, Zoto Mustafayev T, Sahin B, Kefelioglu ESS, Wang SJ, Kurup V, et al. Evaluation of response to stereotactic radiosurgery in patients with radioresistant brain metastases. Radiat Oncol J. 2019;37:265-270. 
  4. Kim IH. Appraisal of re-irradiation for the recurrent glioblastoma in the era of MGMT promotor methylation. Radiat Oncol J. 2019;37:1-12. 
  5. Kondziolka D, Mathieu D, Lunsford LD, Martin JJ, Madhok R, Niranjan A, et al. Radiosurgery as definitive management of intracranial meningiomas. Neurosurgery. 2008;62:53-58; discussion 58-60. 
  6. Minniti G, Esposito V, Amichetti M, Enrici RM. The role of fractionated radiotherapy and radiosurgery in the management of patients with craniopharyngioma. Neurosurg Rev. 2009;32:125-132; discussion 132. 
  7. Murphy ES, Suh JH. Radiotherapy for vestibular schwannomas: a critical review. Int J Radiat Oncol Biol Phys. 2011;79:985-997. 
  8. Li X, Li Y, Cao Y, Li P, Liang B, Sun J, et al. Safety and efficacy of fractionated stereotactic radiotherapy and stereotactic radiosurgery for treatment of pituitary adenomas: a systematic review and meta-analysis. J Neurol Sci. 2017;372:110-116. 
  9. Yeung D, Palta J, Fontanesi J, Kun L. Systematic analysis of errors in target localization and treatment delivery in stereotactic radiosurgery (SRS). Int J Radiat Oncol Biol Phys. 1994;28:493-498. 
  10. Van Buren JM, Houdek P, Ginsberg M. A multipurpose CT-guided stereotactic instrument of simple design. Appl Neurophysiol. 1983;46:211-216. 
  11. Lightstone AW, Benedict SH, Bova FJ, Solberg TD, Stern RL. Intracranial stereotactic positioning systems: report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group no. 68. Med Phys. 2005;32:2380-2398. 
  12. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35:310-317. 
  13. Roa DE, Schiffner DC, Zhang J, Dietrich SN, Kuo JV, Wong J, et al. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets. Med Dosim. 2012;37:257-264. 
  14. Clark GM, Popple R A, Prendergast BM, Spencer SA, Thomas EM, Stewart JG, et al. Plan quality and treatment planning technique for single isocenter cranial radiosurgery with volumetric modulated arc therapy. Pract Radiat Oncol. 2012;2:306-313. 
  15. Clark GM, Popple RA, Young PE, Fiveash JB. Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys. 2010;76:296-302. 
  16. Vergalasova I, Liu H, Alonso-Basanta M, Dong L, Li J, Nie K, et al. Multi-institutional dosimetric evaluation of modern day stereotactic radiosurgery (SRS) treatment options for multiple brain metastases. Front Oncol. 2019;9:483. 
  17. Smyth G, Evans PM, Bamber JC, Bedford JL. Recent developments in non-coplanar radiotherapy. Br J Radiol. 2019;92:20180908. 
  18. Ruggieri R, Naccarato S, Mazzola R, Ricchetti F, Corradini S, Fiorentino A, et al. Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated monoisocenter technique. Radiat Oncol. 2018;13:38. 
  19. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37:4078- 4101. Erratum in: Med Phys. 2012;39:563. Dosage error in article text. Erratum in: Med Phys. 2023;50:3885. 
  20. Ahn BS, Park SY, Park JM, Choi CH, Chun M, Kim JI. Dosimetric effects of sectional adjustments of collimator angles on volumetric modulated arc therapy for irregularly-shaped targets. PLoS One. 2017;12:e0174924. 
  21. Hodapp N. [The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT)]. Strahlenther Onkol. 2012;188:97-99. German. 
  22. Park JM, Park SY, Ye SJ, Kim JH, Carlson J, Wu HG. New conformity indices based on the calculation of distances between the target volume and the volume of reference isodose. Br J Radiol. 2014;87:20140342. 
  23. Masi L, Doro R, Favuzza V, Cipressi S, Livi L. Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys. 2013;40(7):071718. 
  24. Dong P, Lee P, Ruan D, Long T, Romeijn E, Low DA, et al. 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int J Radiat Oncol Biol Phys. 2013;86:407-413. 
  25. Rwigema JC, Nguyen D, Heron DE, Chen AM, Lee P, Wang PC, et al. 4π noncoplanar stereotactic body radiation therapy for head-and-neck cancer: potential to improve tumor control and late toxicity. Int J Radiat Oncol Biol Phys. 2015;91:401-409. 
  26. Nguyen D, Rwigema JC, Yu VY, Kaprealian T, Kupelian P, Selch M, et al. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy. Radiat Oncol. 2014;9:239. 
  27. Ohira S, Ueda Y, Isono M, Masaoka A, Hashimoto M, Miyazaki M, et al. Can clinically relevant dose errors in patient anatomy be detected by gamma passing rate or modulation complexity score in volumetric-modulated arc therapy for intracranial tumors? J Radiat Res. 2017;58:685-692. 
  28. Tanyi JA, Summers PA, McCracken CL, Chen Y, Ku LC, Fuss M. Implications of a high-definition multileaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): a planning study. Radiat Oncol. 2009;4:22. 
  29. Asnaashari K, Chow JC, Heydarian M. Dosimetric comparison between two MLC systems commonly used for stereotactic radiosurgery and radiotherapy: a Monte Carlo and experimental study. Phys Med. 2013;29:350-356. 
  30. Subramanian SV, Subramani V, Thirumalai Swamy S, Gandhi A, Chilukuri S, Kathirvel M. Is 5 mm MMLC suitable for VMAT-based lung SBRT? A dosimetric comparison with 2.5 mm HDMLC using RTOG-0813 treatment planning criteria for both conventional and high-dose flattening filter-free photon beams. J Appl Clin Med Phys. 2015;16:112-124. 
  31. Kang J, Ford EC, Smith K, Wong J, McNutt TR. A method for optimizing LINAC treatment geometry for volumetric modulated arc therapy of multiple brain metastases. Med Phys. 2010;37:4146-4154. 
  32. Wu Q, Snyder KC, Liu C, Huang Y, Zhao B, Chetty IJ, et al. Optimization of treatment geometry to reduce normal brain dose in radiosurgery of multiple brain metastases with single-isocenter volumetric modulated arc therapy. Sci Rep. 2016;6:34511.