Acknowledgement
이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2022R1A6A3A01087626), 한국의료대마운동본부 상임고문 김성복 목사님의 노고에 의해 결실을 맺게 되었으므로 감사의 말씀을 드립니다.
References
- Brand, E. J. & Zhao, Z., (2017), Cannabis in Chinese medicine: are some traditional indications referenced in ancient literature related to cannabinoids? Frontiers in pharmacology 8, 238535.
- Rupasinghe, H. V., Davis, A., Kumar, S. K., Murray, B. & Zheljazkov, V. D., (2020), Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 25 (18), 4078. https://doi.org/10.3390/molecules25184078
- Pertwee, R., (2008), The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9- tetrahydrocannabivarin. British journal of pharmacology 153 (2), 199-215. https://doi.org/10.1038/sj.bjp.0707617
- Jang, E., Kim, H., Jang, S., Lee, J., Baeck, S., In, S., Kim, E., Kim, Y.-u. & Han, E., (2020), Concentrations of THC, CBD, and CBN in commercial hemp seeds and hempseed oil sold in Korea. Forensic science international 306, 110064. https://doi.org/10.1016/j.forsciint.2019.110064
- Aizpurua-Olaizola, O., Soydaner, U., Öztürk, E., Schibano, D., Simsir, Y., Navarro, P., Etxebarria, N. & Usobiaga, A., (2016), Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. Journal of natural products 79 (2), 324-331. https://doi.org/10.1021/acs.jnatprod.5b00949
- Machado Bergamaschi, M., Helena Costa Queiroz, R., Waldo Zuardi, A. & Crippa, A. S., (2011), Safety and side effects of cannabidiol, a Cannabis sativa constituent. Current drug safety 6 (4), 237-249. https://doi.org/10.2174/157488611798280924
- Han, K., Lee, M.-J. & Kim, H., (2016), Understanding of medical cannabis and its regulations: a suggestion for medical and scientific needs. Journal of Korean Medicine for Obesity Research 16 (2), 124-132. https://doi.org/10.15429/jkomor.2016.16.2.124
- Murakami, M. & Hirano, T., (2012), The molecular mechanisms of chronic inflammation development. Frontiers in immunology 3, 37825. https://doi.org/10.3389/fimmu.2012.00323
- Chelombitko, M., (2018), Role of reactive oxygen species in inflammation: a minireview. Moscow University Biological Sciences Bulletin 73, 199-202. https://doi.org/10.3103/S009639251804003X
- Chatterjee, S., Oxidative stress, inflammation, and disease. In Oxidative stress and biomaterials, Elsevier: 2016; pp 35-58.
- Anavi, S. & Tirosh, O., (2020), iNOS as a metabolic enzyme under stress conditions. Free Radical Biology and Medicine 146, 16-35. https://doi.org/10.1016/j.freeradbiomed.2019.10.411
- Gabriels, K., Hoving, S., Gijbels, M. J., Pol, J. F., te Poele, J. A., Biessen, E. A., Daemen, M. J., Stewart, F. A. & Heeneman, S., (2014), Irradiation of existing atherosclerotic lesions increased inflammation by favoring pro-inflammatory macrophages. Radiotherapy and Oncology 110 (3), 455-460. https://doi.org/10.1016/j.radonc.2014.01.006
- 이현정, 유찬미, 이다경, 김종덕 & 마승진, (2019), 구증구포 제다공정에 따른 차의 성분 변화와 관능적 특성. 한국차학회지 25 (1), 39-48.
- Nam, K.-Y., Lee, N.-R., Moon, B.-D., Song, G.-Y., Shin, H.-S. & Choi, J.-E., (2012), Changes of ginsenosides and color from black ginsengs prepared by steaming-drying cycles. Korean Journal of Medicinal Crop Science 20 (1), 27-35. https://doi.org/10.7783/KJMCS.2012.20.1.027
- 김도완, 이연진, 민진우, 김유진, 노영덕 & 양덕춘, (2009), 인삼의 구증구포에 의한 산성다당체, 페놀성화합물의 변환 및 항산화능. 동의생리병리학회지 23 (1), 121-126.
- 김진우, 하미애 & 신용욱, (2016), 흑도라지의 천식 동물모델에 대한 면역조절효과. J. Korean Soc. People Plants Environ. Vol 19 (4), 335-344. https://doi.org/10.11628/ksppe.2016.19.4.335
- 김다희, 오다래, 백승연 & 김미리, (2019), 숙성 흑 맥문동의 품질특성 및 항산화능. 한국식품저장유통학회지 26 (5), 505-512.
- Lee, J. R., Kim, Y. W., Byun, S. H., Kim, S. C. & Park, S. J., (2015), Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel. The Korea journal of herbology 30 (5), 59-65. https://doi.org/10.6116/kjh.2015.30.5.59.
- Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I. & Kim, G.-B., (2014), Effect of fermentation on the antioxidant activity in plant-based foods. Food chemistry 160, 346-356. https://doi.org/10.1016/j.foodchem.2014.03.112
- Gupta, S. & Abu-Ghannam, N., (2012), Probiotic fermentation of plant based products: possibilities and opportunities. Critical reviews in food science and nutrition 52 (2), 183-199. https://doi.org/10.1080/10408398.2010.499779
- Ryz, N. R., Remillard, D. J. & Russo, E. B., (2017), Cannabis roots: a traditional therapy with future potential for treating inflammation and pain. Cannabis and cannabinoid research 2 (1), 210-216. https://doi.org/10.1089/can.2017.0028
- Jin, H.-L., Yu, G.-R., Kim, H., Cho, K.-H., Kim, K.-H. & Lim, D.-W., (2023), A Comparative Study on the Efficacy and Mechanism of Improving Glucose Uptake of Cannabis Root and Stem Extracts. Journal of Korean Medicine for Obesity Research 23 (2), 51-59. https://doi.org/10.15429/jkomor.2023.23.2.51
- Elhendawy, M. A., Wanas, A. S., Radwan, M. M., Azzaz, N. A., Toson, E. S. & ElSohly, M. A., (2019), Chemical and biological studies of Cannabis sativa roots. Medical cannabis and cannabinoids 1 (2), 104-111. https://doi.org/10.1159/000495582
- Almeida Neto, J., Amando Nery, D., Simoni Bezerra Lima, K., Eduarda Gomes da Cruz Silva, M., Cicero de Lima Araujo, T., Andrezza Carvalho de Souza, N., Hideki Vicente Nishimura, R., de Souza Araujo, C., Paula de Oliveira, A. & Roberto Guedes da Silva Almeida, J., (2023), Phytochemical characterization of Cannabis sativa L. roots from Northeastern Brazil. Chemistry & Biodiversity 20 (3), e202201039. https://doi.org/10.1002/cbdv.202201039
- Bondet, V., Brand-Williams, W. & Berset, C., (1997), Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Science and Technology 30 (6), 609-615. https://doi.org/10.1006/fstl.1997.0240
- Jung, M.-H., Yoo, J.-M., Kang, Y.-J., Lee, H. W., Kim, S. H., Sung, S. H., Lee, Y.-J., Choi, I. & Kim, T.-J., (2010), Idesolide, an isolate of Idesia polycarpa, inhibits apoptosis through induction of intracellular heat shock protein 70 in C2C12 muscle cells. Biological and Pharmaceutical Bulletin 33 (6), 1063-1066. https://doi.org/10.1248/bpb.33.1063
- Jin, D., Dai, K., Xie, Z. & Chen, J., (2020), Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Scientific Reports 10 (1), 3309. https://doi.org/10.1038/s41598-020-60172-6
- Kornpointner, C., Martinez, A. S., Marinovic, S., Haselmair-Gosch, C., Jamnik, P., Schroder, K., Lofke, C. & Halbwirth, H., (2021), Chemical composition and antioxidant potential of Cannabis sativa L. roots. Industrial Crops and Products 165, 113422. https://doi.org/10.1016/j.indcrop.2021.113422
- Mariod, A. A. & Fatima, A. M., (2022), Properties and advantages of food fermentation. African Fermented Food Products-New Trends, 31-36. https://doi.org/10.1007/978-3-030-82902-5_3
- Lim, D.-W. & Wang, J.-H., (2022), Gut microbiome: the interplay of an "invisible organ" with herbal medicine and its derived compounds in chronic metabolic disorders. International Journal of Environmental Research and Public Health 19 (20), 13076. https://doi.org/10.3390/ijerph192013076
- Nguyen, T. T. & Nguyen, H. V., (2020), Effects of fermentation conditions using Lactobacillus plantarum on the charantin, stigmasterol glucoside and β-sitosterol glucoside contents of bitter gourd (Momordica charantia L.) Juice. Plant Foods for Human Nutrition 75, 656-658. https://doi.org/10.1007/s11130-020-00860-w
- Cai, Y., Luo, Q., Sun, M. & Corke, H., (2004), Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life sciences 74 (17), 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
- Gonel, A., Akdag, A. & Yilmaz, M. A., (2018), Identification of phenolic compounds, antioxidant activity and anti-cancer effects of the extract obtained from the shoots of Ornithogalum narbonense L. Cellular and Molecular Biology 64 (1), 75-83. https://doi.org/10.14715/cmb/2018.64.1.14
- Si, W., Li, X., Jing, B., Chang, S., Zheng, Y., Chen, Z., Zhao, G. & Zhang, D., (2024), Stigmasterol regulates microglial M1/M2 polarization via the TLR4/NF-κB pathway to alleviate neuropathic pain. Phytotherapy Research 38 (1), 265-279. https://doi.org/10.1002/ptr.8039
- Ward, M. G., Li, G., Barbosa-Lorenzi, V. C. & Hao, M., (2017), Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Scientific reports 7 (1), 9536. https://doi.org/10.1038/s41598-017-10209-0
- Feng, S., Dai, Z., Liu, A. B., Huang, J., Narsipur, N., Guo, G., Kong, B., Reuhl, K., Lu, W. & Luo, Z., (2018), Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1863 (10), 1274-1284. https://doi.org/10.1016/j.bbalip.2018.08.004