DOI QR코드

DOI QR Code

A Study on the Design and Implementation of an AI Mock Interview System for Computer Science Interview Preparation Using LLM-based ChatGPT

LLM 기반 ChatGPT를 활용한 컴퓨터 분야 면접 준비용 AI 모의 면접 시스템의 설계 및 구현에 대한 연구

  • Jae-Sung Chun (Department of Computer Engineering Korea University of Technology and Education) ;
  • Hee-Kwon Jang (Department of Computer Engineering InCheon National University) ;
  • Ji-Hye Kim (School of Computer Arts ChungAng University) ;
  • Chang-Min Bae (Department of Multimedia Engineering, Sunchon National University) ;
  • Dong-Gyu Lee (Department of Computer Engineering and Engineering, Kangwon National University) ;
  • Il-Young Moon (Department of Computer Engineering Korea University of Technology and Education)
  • 천재성 (한국기술교육대학교 컴퓨터공학과) ;
  • 장희권 (인천대학교 컴퓨터공학부) ;
  • 김지혜 (중앙대학교 컴퓨터예술학부) ;
  • 배창민 (순천대학교 멀티미디어공학과) ;
  • 이동규 (강원대학교 컴퓨터공학과) ;
  • 문일영 (한국기술교육대학교 컴퓨터공학과)
  • Received : 2024.10.07
  • Accepted : 2024.10.21
  • Published : 2024.10.31

Abstract

This study aims to design and implement an AI mock interview system for Computer Science (CS) interview preparation using LLM (Large Language Model) based ChatGPT. The system utilizes AI's natural language processing and speech recognition capabilities to analyze and provide real-time feedback on interview responses, helping users improve their weaknesses during the preparation process. According to a survey, 90% of users reported that the real-time feedback function provided substantial assistance in their interview preparation. Key features include GPT prompt generation and Speech-to-Text functionality, which converts voice data into text. The system received positive evaluations for its response time and feedback accuracy. Future research will explore expanding the range of question types and applying the system to various industries.

본 연구는 LLM(Large Language Model) 기반 ChatGPT를 활용하여 Computer Science(CS) 면접 준비를 위한 AI 모의 면접 시스템을 설계하고 구현하는 것을 목표로 한다. 이 시스템은 AI의 자연어 처리와 음성 인식 기능을 통해 면접자의 답변을 실시간으로 분석하고 피드백을 제공하여, 면접 준비 과정에서 학습자의 취약점을 개선할 수 있도록 지원한다. 설문조사 결과, 사용자의 90%가 실시간 피드백 기능이 면접 준비에 실질적인 도움을 주었다고 평가하였다. 주요 기능으로는 GPT 프롬프트 생성, 음성 데이터를 텍스트로 변환하는 Speech-to-Text 기능이 포함된다. 시스템은 응답 시간과 피드백의 정확성 면에서 긍정적인 평가를 받았으며, 향후 연구는 질문 유형의 확장과 다양한 산업 분야로의 적용 가능성을 모색할 예정이다.

Keywords

References

  1. Y.-C. Chou, F. R. Wongso, C.-Y. Chao, and H.-Y. Yu, "An AI Mock-interview Platform for Interview Performance Analysis," in Proceedings of the 2022 10th International Conference on Information and Education Technology (ICIET), IEEE, pp. 37-41, Apr. 2022.
  2. G. Bansal, V. Chamola, A. Hussain, M. Guizani, and D. Niyato, "Transforming Conversations with AI-A Comprehensive Study of ChatGPT," Springer US, vol. 16, no. 5, pp. 2487-2510, 2024.
  3. P. Kumar, "Large Language Models (LLMs): Survey, Technical Frameworks, and Future Challenges," Springer Netherlands, vol. 57, no. 10, 2024, DOI: 10.1007/s10462-024-10888-y.
  4. Y. Shin and J. Shin, "Structure and improvement strategies for TOPIK argumentative writing based on chatGPT," Journal of East Aisan Cultures, no. 98, pp. 121-146, August, 2024.
  5. Y. Kim, "A case study on experiencing an ai interview system," Culture and Convergence, vol. 45, no. 11, pp. 283-294, 2023, DOI: 10.33645/cnc.2023.11.45.11.283.
  6. S. Choi, H. Kim, Y. Lee, H. Lee, D. Ryu, and C. Yoo, "React-based integrated service for collaborative support tools," Journal of Korean Institute of Information Technology, vol. 2022, no. 6, pp. 763-767, 2022.
  7. Y. Park, H. Park, and H. Byun, "Design and Implementation of a User-Sharing-Oriented Online Library System Using Spring Framework," Korean Institute of Information Scientists and Engineers, vol. 36, no. 1B, pp. 383-387, June, 2009.
  8. "Amazon Relational Database Service," Amazon Web Services, [Online]. Available: https://aws.amazon.com/ko/rds/?nc2=h_ql_prod_db_rds. [Accessed: Sep. 30, 2024].
  9. "Whisper," OpenAI, [Online]. Available: https://openai.com/index/whisper/. [Accessed: Sep. 30, 2024].
  10. K. Choi, E. Kang, and H. Kang, "Providing multiple BLOB types for efficient storage of multimedia data," Journal of KIISE, vol. 22, no. 10, pp. 1404-1415, October, 1995.