DOI QR코드

DOI QR Code

고 충격강도의 경량 내열 내화 콘크리트 제조

Preparation of lightweight fireproofing concrete with high impact strength

  • 정석주 (한국해양대학교 해양신소재융합공학과) ;
  • 김주은 (한국해양대학교 해양신소재융합공학과) ;
  • 정서린 (한국해양대학교 해양신소재융합공학과) ;
  • 이병우 (한국해양대학교 해양신소재융합공학과)
  • Seok Ju Jeong (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University) ;
  • Joo Eun Kim (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University) ;
  • Seo Lin Jeong (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University) ;
  • Byeong Woo Lee (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University)
  • 투고 : 2024.09.30
  • 심사 : 2024.10.21
  • 발행 : 2024.10.31

초록

일반적 콘크리트의 낮은 강도와 취성파괴의 문제점을 해결하기 위해 일반 시멘트를 콘크리트 결합제의 주 소재로 하되, 여기에 경량화와 내화 단열성을 부여하기 위한 골재로 폐유리를 가공한 다공성 유리 비드(porous glass beads)와 콘크리트의 강도 증진을 위한 기능성 유기 결합첨가제(폴리머)를 첨가하고, 추가 결합제를 사용하여 비중이 물보다 낮은 콘크리트형 경량 소재를 제조하였다. 이렇게 제조된 소재는 기존 콘크리트 등 세라믹이 가지는 낮은 작업성과 취성파괴의 문제점이 해결되었으며 내화성도 우수하였고 고온에서의 낮은 열전도도를 보이는 등 기계적 및 열적으로 우수한 물성을 보였다. 또한, 기존 콘크리트와 같이 일정한 공간에 주입 성형할 수 있으며, 몰드에 넣어 벽돌과 같은 블록(브릭) 형태 또는 얇은 보드 형태로 가공하여 사용할 수 있으며, 페인트와 같이 발라서 사용도 가능하므로 다양한 구조재 형태로 적용이 가능할 것으로 여겨진다.

In order to solve the problems of low strength and brittle fracture of conventional concretes, ordinary cement was used as the main material of concrete binder, and porous glass beads processed from waste glass were used as aggregates to provide lightweight and fireproof insulation, and functional organic binding additives (including polymers) were added to improve concrete strength. Additional binding agents, such as silanes, were used to produce concrete-type lightweight materials with a specific gravity lower than water. The resulting materials thus manufactured have solved the problems of low work-ability and brittle fracture of conventional (ceramic) concretes, and exhibited excellent mechanical and thermal properties, with good fireproofing properties and low thermal conductivity at high temperatures. In addition, it can be molded into a certain space like conventional concrete, processed into bricks or thin boards in molds, or applied like paints, so it is believed that it can be applied to various structural materials.

키워드

참고문헌

  1. K. Thienel, T. Haller and N. Beuntner, "Lightweight concrete from basics to innovations", Mater. 13 (2020) 1120.
  2. J.H. Mohammed and A.J. Hamad, "Materials, properties and application review of Lightweight concrete", Rev. Tec. Ing. Univ. Zulia. 2 (2014) 10.
  3. A. Nirbhavane, S. Pingat, S. Khaire, P. Bharati, K. Dahiphale and S. Patil, "Lightweight concrete", IJARIIT 10 (2024) 94.
  4. N. Narayanan and K. Ramamurthy, "Structure and properties of aerated concrete: a review", Cem. Concr. Compos. 22 (2000) 321.
  5. ASTM C 330-04, Lightweight Aggregates for Structural Concrete, 2004.
  6. Ship Structure Committee, Survey of experience using reinforced concrete in floating marine structures, 1984.
  7. M. Tadros, M. Ventura and C. G. Soares, "Management of the properties of shipbuilding expanded clay lightweight concrete", International Journal of Engineering & Technology (2018) 245.
  8. R. Bedi, R. Chandra and S.P. Singh, "Mechanical properties of polymer concrete", J. Compos. 2013 (2013) 948745.
  9. A. Ali and A.A. Ansari, "Polymer concrete as innovative material for development of sustainable architecture", 2nd International Conference on Emerging Trends in Engineering & Technology Proc. (2013) 1.
  10. ACI Committee 548 Report, Guide for the use of polymers in concrete, ACI 548.1R-97, 1997.
  11. The Paris agreement. New York, UNFCCC (2016).
  12. M.V. Nikolenko, K.V. Vasylenko, V.D. Myrhorodska, A. Kostyniuk and B. Likozar, "Review of the IMO initiatives for ship energy efficiency and their implications", Int. J. Mar. Sci. 22 (2023) 662.
  13. Technical data sheet, Lightweight aggregate according to DIN EN 13055-1, Poraver expanded glass.