DOI QR코드

DOI QR Code

Frontal Theta/Beta Ratio Predicts Attentional Bias to Threat In Individuals with High Social Anxiety

고 사회 불안 성인의 위협 자극에 대한 주의 편향 및 전두 영역 Theta-Beta Ratio (TBR) 패턴

  • Nayun Kwon ;
  • So-Yeon Kim
  • 권나연 (덕성여자대학교 일반대학원 인지 발달 및 발달장애 심리학과) ;
  • 김소연 (덕성여자대학교 심리학과)
  • Received : 2024.08.10
  • Accepted : 2024.09.02
  • Published : 2024.09.30

Abstract

Individuals with high social anxiety (HSA) exhibit an excessive bias toward socially threatening stimuli. The purpose of this study is to identify attentional bias patterns toward threat stimuli in people with HSA (but not those with social anxiety disorder, SAD). Furthermore, our goal was to investigate neural biomarkers that can predict these attentional bias patterns in people with HSA. We collected and analyzed behavioral data on attentional bias patterns, anxiety levels, social anxiety levels, and the frontal region theta/beta ratio using an electroencephalogram (EEG) from 33 neurotypical female adults. For analysis, we divide participants into two categories: (1) HSA and (2) low social anxiety (LSA). The results showed that both the HSA and LSA groups had an initial attentional bias toward emotional faces, but only the HSA group had a prolonged attentional bias toward angry faces. Furthermore, a significant positive correlation was found between the attentional bias score and the social anxiety score. Additionally, a decreased theta/beta ratio significantly explained the degree of attention bias in the HSA group and was a significant predictor of attentional bias in this group. Overall, this study finds that individuals with HSA exhibit similar patterns of attentional bias to those found in patients with SAD, as identified in previous research. Moreover, the findings suggest that a decreased frontal theta/beta ratio is associated with excessive attentional biases in HSA individuals. These findings contribute to our understanding of the behavioral and neurological pathophysiology associated with high levels of social anxiety, potentially assisting in the development of appropriate evaluation methods and the determination of the effect of the treatment intervention.

높은 사회 불안을 보이는 사람들은 사회적으로 위협적인 자극에 대한 과도한 주의 편향을 보이는 특징이 있다. 본 연구에서는 고 사회 불안 성인에게서 특징적으로 나타나는 위협 자극에 대한 주의 편향 패턴을 확인하고, 이러한 주의 편향 패턴을 예측할 수 있는 신경 생체 지표를 확인하고자 하였다. 이를 위해, 33명의 정상 여성 성인을 대상으로 주의 편향 패턴, 기질/상태 불안 수준, 사회 불안 수준, 전두 영역의 세타/베타 비(TBR)를 수집하였으며, 참가자를 고 사회 불안(HSA)과 저 사회 불안(LSA)집단으로 나누어 분석하였다. 그 결과, HSA와 LSA 모두 정서적 얼굴에 대한 유의미한 초기 주의편향을 보였으나, 위협적 얼굴에 대한 지속적인 주의편향은 HSA 집단에서만 나타났다. 또한, 주의 편향 점수와 사회 불안 점수 간의 유의미한 정적 상관관계를 확인하였으며, 감소된 TBR이 HSA 집단의 주의 편향 수준을 유의미하게 설명하는 예측 요인임을 확인하였다. 본 연구의 결과는 고 사회 불안 성인의 높은 사회불안 수준과 관련된 주의 편향 양상 및 신경 생체 지표를 확인하고, 적절한 평가 방법 개발 및 치료 개입의 효과를 예측하는 등의 병태 생리에 기여할 수 있음을 시사한다.

Keywords

References

  1. Aftanas, L. I., Pavlov, S. V., Reva, N. V., & Varlamov, A. A. (2003). Trait anxiety impact on the EEG theta band power changes during appraisal of threatening and pleasant visual stimuli. International Journal of Psychophysiology, 50(3), 205-212. DOI: 10.1016/S0167-8760(03)00156-9
  2. Agusti, A. I., Satorres, E., Pitarque, A., & Melendez, J. C. (2017). An emotional Stroop task with faces and words. A comparison of young and older adults. Consciousness and cognition, 53, 99-104. DOI: 10.1016/j.concog.2017.06.010
  3. Agusti, A. I., Satorres, E., Pitarque, A., & Melendez, J. C. (2019). Effects of SOA and age on the inhibition of return in a localization task. Current Psychology, 38, 1304-1309. DOI: 10.1007/s12144-017-9683-8
  4. Al-Ezzi, A., Kamel, N., Faye, I., & Gunaseli, E. (2020). Review of EEG, ERP, and brain connectivity estimators as predictive biomarkers of social anxiety disorder. Frontiers in Psychology, 11, 730. DOI: 10.3389/fpsyg.2020.00730.
  5. American Psychiatric Association, D. S. M. T. F., & American psychiatric Association D. S. (2013). Diagnostic and statistical manual of mental disorders: DSM-5(Vol. 5, No. 5). Washington, DC: American psychiatric association.
  6. Angelidis, A., Hagenaars, M., van Son, D., van der Does, W., & Putman, P. (2018). Do not look away! Spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biological Psychology, 135, 8-17. DOI: 10.1016/j.biopsycho.2018.03.002.
  7. Angelidis, A., van der Does, W., Schakel, L., & Putman, P. (2016). Frontal EEG theta/beta ratio as an electrophysiological marker for attentional control and its test-retest reliability. Biological Psychology, 121(Pt A), 49-52. DOI: 10.1016/j.biopsycho.2016.09.008.
  8. Baek, Y. M., & Lee, D. H. (2013) Interpretation biases in processing of the facial expression emotional stimuli of the social anxiety group. Korean Journal of Psychology: Clinical, 32(1), 243-257.
  9. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychological Bulletin, 133(1), 1. DOI: 10.1037/0033-2909.133.1.1.
  10. Beall, P. M., & Herbert, A. M. (2008). The face wins: Stronger automatic processing of affect in facial expressions than words in a modified Stroop task. Cognition and Emotion, 22(8), 1613-1642. DOI: 10.1080/02699930801940370
  11. Beck, A. T. (1967). Depression: Clinical, experimental, and theoretical aspects. Harper & Row google schola, 2, 103-113.
  12. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300. DOI: 10.1111/j.2517-6161.1995.tb02031.x
  13. Choi, B. H. (2007). Cognitive-Behavioral Group Therapy for Social Phobia: Basic Mechanisms and Clinical Strategies. Seoul: Sigma press
  14. Dalgleish, T., & Power, M. J. (1999). Cognition and emotion: Future directions. Handbook of Cognition and Emotion, 799-805.
  15. Dell'Osso, L., Rucci, P., Ducci, F., Ciapparelli, A.,Vivarelli, L., Carlini, M., ... & Cassano, G. B. (2003). Social anxiety spectrum. European Archives of Psychiatry and Clinical Neuroscience, 253, 286-291. DOI: 10.1007/s00406-003-0442-5
  16. Filho, A. S., Hetem, L. A., Ferrari, M. C., Trzesniak, C.,Martin-Santos, R., Borduqui, T., ... & Crippa, J. A. D. S. (2010). Social anxiety disorder: what are we losing with the current diagnostic criteria?. Acta Psychiatrica Scandinavica, 121(3), 216-226. DOI: 10.1111/j.1600-0447.2009.01459.
  17. Friel, P. N. (2007). EEG biofeedback in the treatment of attention deficit/hyperactivity disorder. Alternative Medicine Review, 12(2), 146-151.
  18. Gilboa-Schechtman, E., Foa, E. B., & Amir, N. (1999). Attentional biases for facial expressions in social phobia: The face-in-the-crowd paradigm. Cognition & Emotion, 13(3), 305-318. DOI: 10.1080/026999399379294.
  19. Givon-Benjio, N., & Okon-Singer, H. (2020). Biased estimations of interpersonal distance in non-clinical social anxiety. Journal of Anxiety Disorders, 69, 102171. DOI: 10.1016/j.janxdis.2019.102171.
  20. Imperatori, C., Farina,B., Adenzato, M., Valenti, E. M., Murgia, C., Della Marca, G., ... & Ardito, R. B. (2019). Default mode network alterations in individuals with high-trait-anxiety: an EEG functional connectivity study. Journal of Affective Disorders, 246, 611-618. DOI: 10.1016/j.jad.2018.12.071.
  21. Kim, H. S. (2001). Memory bias in subtypes of social phobia (Unpublished master's thesis). Seoul National University, Seoul, Republic of Korea. Retrieved from http://www.riss.kr/
  22. Kim, M. H., Kim, J., & Kim, S. Y. (2022). Attentional bias to emotional stimuli and effects of anxiety on the bias in neurotypical adults and adolescents. Science of Emotion and Sensibility, 25(4), 107-118. DOI: 10.14695/KJSOS.2022.25.4.107
  23. Kim, S. W., Kwon, Y. N., & Choi, S. W. (2017). The effect of beta neurofeedback training on the quality of sleep. Korean Health Psychological Association: Health, 22(3), 511-530.
  24. Kim, S. Y., Shin, J. E., Lee Y. I., Kim, H., Jo, H. J. & Choi S. H. (2018). Neural evidence for persistent attentional bias to threats in patients with social anxiety disorder. Social Cognitive and Affective Neuroscience, 13(12), 1327-1336. DOI: 10.1093/scan/nsy101.
  25. Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience and Biobehavioral Reviews, 31(3), 377-395. DOI: 10.1016/j.neubiorev.2006.10.004.
  26. Lee, S. E. (2017). Risk factors for suicidal ideation across the life cycle among Korean adults: Korean psychosocial anxiety survey. Korean Journal of Adult Nursing, 29(2), 109-118. DOI: 10.7475/kjan. 2017.29.2.109
  27. Lee, J. Y., & Choi, C. H. (1997). A study of the reliability and the validity of the Korean version of social phobia scales(K-SAD, K-FNE). The Korean Journal of Clinical Psychology, 16(2), 251-264. Retrieved from https://kiss.kstudy.com/Detail/Ar?key=154321
  28. Lee, M. J., & Kim, S. Y. (2020). Effects of cognitive reappraisal and expressive suppression on negative emotion in female college students. Science of Emotion and Sensibility, 23(1), 89-102. DOI: 10.14695/KJSOS.2020.23.1.89
  29. Lee, Y. H., & Song, J. Y. (1991). A Study on the Reliability and Validity of BDI, SDS, and MMPI-D Scale. Korean Journal of Psychology: Clinical, 10(1), 98-113
  30. Mattick, R. P., & Clarke, J. C. (1998). Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behaviour Research and Therapy, 36(4), 455-470.
  31. Merikangas, K. R., Avenevoli, S., Acharyya, S., Zhang, H., & Angst, J. (2002). The spectrum of social phobia in the Zurich cohort study of young adults. Biological Psychiatry, 51(1), 81-91. DOI: 10.1016/S0006-3223(01)01309-9
  32. Min, S. K., Jon, D. I., Lee, S. H., Ahn, C. B., & Yoo, S. K. (1997). Clinical validity of the domestic EEG and EP mapping system (Neuronics). Sleep Medicine and Psychophysiology, 4(1), 96-106.
  33. Modi, S., Kumar, M., Kumar, P., Khushu, S. (2015). Aberrant functional connectivity of resting state networks associated with trait anxiety. Psychiatry Research, 234(1), 25-34. DOI: 10.1016/j.pscychresns.2015.07.006
  34. Park, J. A., & Kim, S. Y. (2024). Attention and memory bias to threatened stimuli in individuals with high social anxiety. Science of Emotion and Sensibility, 27(2) 113-126. DOI: 10.14695/KJSOS.2024.27.2.113
  35. Parks, E. L., Kim, S. Y., & Hopfinger, J. B. (2014). The persistence of distraction: A study of attentional biases by fear, faces, and context. Psychonomic Bulletin & Review, 21(6), 1501-1508. DOI: 10.3758/s13423-014-0615-4.
  36. Perlis, M. L., Giles, D. E., Mendelson, W. B., Bootzin, R. R., & Wyatt, J. K. (1997). Psychophysiological insomnia: the behavioural model and a neurocognitive perspective. Journal of Sleep Research, 6(3), 179-188. DOI: 10.1046/j.1365-2869.1997.00045.x
  37. Perlis, M. L., Pigeon, W. R., & Drummond, S. P. A. (2007). Neurobiology of insomnia. Neurobiology of Disease, 735-744. DOI: 10.1016/B978-012088592-3/50070-0
  38. Pishyar, R. Harris, L. M., & Menzies, R. G. (2004). Attentional bias for words and faces in social anxiety. Anxiety, Stress & Coping, 17(1), 23-36. DOI: 10.1080/10615800310001601458
  39. Putman, P. (2011). Resting state EEG delta-beta coherence in relation to anxiety, behavioral inhibition, and selective attentional processing of threatening stimuli. International journal of Psychophysiology, 80(1), 63-68. DOI: 10.1016/j.ijpsycho.2011.01.011.
  40. Putman, P., van Peer, J., Maimari, I., & van der Werff, S. (2010). EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biological Psychology, 83(2), 73-78. DOI: 10.1016/j.biopsycho.2009.10.008
  41. Putman, P., Verkuil, B., Arias-Garcia, E., Pantazi, I., &van Schie, C. (2014). EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 782-791. DOI: 10.3758/s13415-013-0238-7.
  42. Savostyanov, A. N., Tsai, A. C., Liou, M., Levin, E. A., Lee, J. D., Yurganov, A. V., & Knyazev, G. G. (2009). EEG-correlates of trait anxiety in the stop-signal paradigm. Neuroscience Letters, 449(2), 112-116. DOI: 10.1016/j.neulet.2008.10.084.
  43. Schutter, D. J., & Van Honk, J. (2005). Electrophysiological ratio markers for the balance between reward and punishment. Cognitive Brain Research, 24(3), 685-690. DOI: 10.1016/j.cogbrainres. 2005.04.002.
  44. Seo, S., Im, S., Lee, S. G., & Shin, C. J. (2015). Electroencephalographic Characteristics of Alcohol Dependent Patients: 3-Dimensional Source Localization. Korean Journal of Biological Psychiatry, 22(2), 87-94.
  45. Soutar, R. G., & Longo, R. E. (2011). Doing neurofeedback: An introduction. ISNR Research Foundation.
  46. Tian, X., Wei, D., Du, X., Wang, K., Yang, J., Liu, W., ... & Qiu, J. (2016). Assessment of trait anxiety and prediction of changes in state anxiety using functional brain imaging: A test-retest study. Neuroimage, 133, 408-416. DOI: 10.1016/j.neuroimage.2016.03.024.
  47. Watson, D., & Friend, R. (1969). Measurement of social-evaluative anxiety. Journal of Consulting and Clinical Psychology, 33(4), 448. DOI: 10.1037/h0027806
  48. Wittchen, H. U., Stein, M. B., & Kessler, R. C. (1999). Social fears and social phobia in a community sample of adolescents and young adults: prevalence, risk factors and co-morbidity. Psychological Medicine, 29(2), 309-323. DOI: 10.1017/S0033291798008174
  49. Yuan, M., Zhu, H., Qiu, C., Meng, Y., Zhang, Y., Shang, J., ... & Lui, S. (2016). Group cognitive behavioral therapy modulates the resting-state functional connectivity of amygdala-related network in patients with generalized social anxiety disorder. BMC Psychiatry, 16, 1-9. DOI: 10.1186/s12888-016-0904-8.