DOI QR코드

DOI QR Code

자율주행 상황에서 운전자의 장애물 회피 전후와 운전자 연령대에 따른 상황인식과 차량통제 차이

Effects of Before-After Obstacle Avoidance and Driver Age on Situation Awareness and Vehicle Control in Automated Driving

  • 이재식 (부산대학교 심리학과)
  • Jaesik Lee
  • 투고 : 2024.07.16
  • 심사 : 2024.09.02
  • 발행 : 2024.09.30

초록

운전 시뮬레이션을 통해 3-수준 자율주행 중 차량 전방에 장애물이 출현하는 상황에서 서로 다른 연령대의 운전자들이 보이는 제어권 전환 반응시간과 상황인식, 그리고 차량통제 수행에서의 차이를 장애물 회피 이전(before the obstacle avoidance: BOA)과 이후(after the obstacle avoidance: AOA) 구간으로 구분하여 분석하였다. 본 연구의 결과를 요약하면 다음과 같다. 첫째, 실험참가자들의 상황인식은 AOA 구간에 비해 BOA 구간에서, 그리고 청년운전자 집단에 비해 고령운전자 집단에서 더 낮았는데, 이러한 경향은 AOA 구간에 비해 BOA 구간에서 더 뚜렷하였다. 둘째, 제어권 인수 시간은 청년운전자 집단에 비해 고령운전자 집단에서 유의하게 더 느렸다. 셋째, 네 가지 차량통제 측정치 모두에서 BOA 구간보다는 AOA 구간에서, 그리고 청년운전자 집단보다는 고령운전자 집단에서 더 저하된 수행이 관찰되었으나 차량통제 수행에서의 연령집단간 차이는 BOA 구간보다는 AOA 구간에서 더 컸다. 이러한 결과는 자율주행 중 제어권을 인수받아 수동으로 운전하여 장애물을 회피하는 상황에서 운전자의 상황인식과 차량통제는 BOA 구간과 AOA 구간에 따라 달라질 수 있음을 시사한다.

Using level-3 automated driving simulation, this study examined the effects of before-after the obstacle avoidance(BOA and AOA, respectively) and driver age group on situation awareness, control transition time, and vehicle control performances.The results can be summarized as follows. First, the situation awareness of the participants was lower in the BOA section compared to the AOA section, and in the older driver group compared to the young driver group, and this tendency was more evident in the BOA section. Second, the control takeover time was significantly slower in the older driver group than in the younger driver group. Third, in all four vehicle control measures, worse performance was observed in the AOA section than in the BOA section, and in the older driver group than in the young driver group, but the difference between age groups in vehicle control performance was larger in the AOA section than in the BOA section. These results suggest that in a situation where the driver takes over control during autonomous driving and avoids obstacles by driving manually, the driver's situational awareness and vehicle control may vary depending on before and after the obstacle avoidance.

키워드

과제정보

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. Brady, B., Eramudugolla, R., Wood, J. M., & Anstey, K. J. (2021). Association between decision-making under risk conditions and on-road driving safety among older drivers, Neuropsychology, 35(6), 622-629. DOI: 10.1037/neu 0000754
  2. Brandenburg, S., & Chuang, L. (2019). Take-over requests during highly automated driving: How should they be presented and under what conditions?. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 214-225. DOI: 10.1016/j.trf.2019.08.023
  3. Caird, J. K., Simmons, S. M., Wiley, K., Johnston, K. A., & Horrey, W. J. (2018). Does talking on a cell phone, with a passenger, or dialing affect driving performance?: an updated systematic review and meta-analysis of experimental studies. Human Factors, 60, 101-133. DOI: 10.1177/0018720817748145
  4. Casner, S. M., Hutchins, E. L., & Norman, D. (2016). The challenges of partially automated driving. Communications of the ACM, 59(5), 70-77. DOI: 10.1145/2830565
  5. Chen, F., Lu, G., Tan, H., Liu, M., & Wan, H. (2022). Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers. Accident Analysis & Prevention, 177, 106826. DOI: 10.1016/j.aap.2022.106826
  6. Clark, H., & Feng, J. (2017). Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation. Accident Analysis & Prevention, 106, 468-479. DOI: 10.1016/j.aap.2016.08.027
  7. Collet, C., Guillot, A., & Petit, C. (2010). Phoning while driving II: a review of driving conditions influence. Ergonomics, 53(5), 602-616. DOI: 10.1080/00140131003769092
  8. Cuenen, A., Jongen, E. M., Brijs, T., Brijs, K., Houben, K., & Wets, G. (2016). Effect of a working memory training on aspects of cognitive ability and driving ability of older drivers: Merits of an adaptive training over a non-adaptive training. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 15-27. DOI: 10.1016/j.trf.2016.06.012
  9. Curran, P. J., West, S. G., & Finch, G. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16-29. DOI: 10.1037/1082-989X.1.1.16
  10. Eriksson, A., & Stanton, N. A. (2017). Takeover time in highly automated vehicles: noncritical transitions to and from manual control. Human Factors, 59(4), 689-705. DOI: 10.1177/00187208166 85832
  11. Eriksson, A., Banks, V. A., & Stanton, N. A. (2017). Transition to manual: Comparing simulator with on-road control transitions. Accident Analysis & Prevention, 102, 227-234. DOI: 10.1016/j.aap.2017.03.011
  12. Feng, J., Choi, H., Craik, F. I., Levine, B., Moreno, S., Naglie, G., & Zhu, M. (2018). Adaptive response criteria in road hazard detection among older drivers. Traffic Injury Prevention, 19, 141-146. DOI: 10.1080/15389588.2017.1373190
  13. Freund, B., & Smith, P. (2011). Older drivers. In Handbook of Traffic Psychology(pp. 339-351). Academic Press. DOI: 10.1016/B978-0-12-381984-0.10024-4
  14. Gasne, C., Paire-Ficout, L., Bordel, S., Lafont, S., & Ranchet, M. (2022). Takeover performance of older drivers in automated driving: a review. Transportation Research Part F: Traffic Psychology and Behaviour, 87, 347-364. DOI: 10.1016/j.trf.2022.04.015
  15. Gold, C., Dambock, D., Lorenz, L., & Bengler, K. (2013). "Take over!" How long does it take to get the driver back into the loop?. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1), 1938-1942. Los Angeles, USA: SAGE Publications. DOI: 10.1177/1541931213571433
  16. Goodall, N. J. (2014). Ethical decision making during automated vehicle crashes. Transportation Research Record, 2424(1), 58-65. DOI: 10.3141/2424-07
  17. Hamdan, A., Talj, R., & Cherfaoui, V. (2022). Transition management between an autonomous vehicle and a real human driver, in a context of take-over request. IFAC-Papers OnLine, 55(14), 65-70. DOI: 10.1016/j.ifacol.2022.07.584
  18. Hoc, J. M., Young, M. S., & Blosseville, J. M. (2009). Cooperation between drivers and automation: implications for safety. Theoretical Issues in Ergonomics Science, 10(2), 135-160. DOI: 10.1080/14639220802368856
  19. Hu, W., Zhang, T., Zhang, Y., & Chan, A. H. S. (2024). Non-driving-related tasks and drivers' takeover time: A meta-analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 103, 623-637. DOI: 10.48550/arXiv.2405. 18667
  20. Huang, G., Steele, C., Zhang, X., & Pitts, B. J. (2019). Multimodal cue combinations: a possible approach to designing in-vehicle takeover requests for semi-autonomous driving. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 1739-1743. Sage CA: Los Angeles, CA: SAGE Publications.
  21. Ko, Y., & Lee, J. (2023). Takeover time and driving performances by driver's age group, types of non-driving related tasks, and road complexity in automated driving. Journal of the Korean Data Analysis Society, 25(3), 1177-1192. DOI: 10.37727/jkdas.2023.25.3.1177
  22. Korber, M., Gold, C., Lechner, D., & Bengler, K. (2016). The influence of age on the take-over of vehicle control in highly automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 39, 19-32. DOI: 10.1016/ j.trf.2016.03.002
  23. Lee, J. (2021). The effects of road type and driver's age on simulator sickness. Journal of the Korean Data Analysis Society, 23(5), 2365-2380. DOI: 10.37727/jkdas.2021.23.5.2365
  24. Lee, J. (2022). Differences in detection response and driving performance of middle-aged and elderly drivers according to stimulus location and road type: a driving simulation study. Journal of The Korean Data Analysis Society, 24(4), 1543-1561. DOI: 10.37727/jkdas.2022.24.4.1543
  25. Ma, Z., & Zhang, Y. (2024). Driver-automated vehicle interaction in mixed traffic: Types of interaction and drivers' driving styles. Human Factors, 66(2), 544-561. DOI: 10.1177/00187208221088358
  26. McKnight, A. J., & McKnight, A. S. (1999). Multivariate analysis of age-related driver ability and performance deficits. Accident Analysis and Prevention, 31(5), 445-454. DOI: 10.1016/ S0001-4575(98)00082-7
  27. Namkung, K., Yoo, C., Jeon, H., & Pan., Y. (2020). Auditory user interface design guidelines for control transitions in the conditional self-driving phase. Journal of Next-generation Convergence Information Services Technology, 9(1), 49-59, DOI: 10.29056/jncist.2020.03.05
  28. Navarro, J., Francois, M., & Mars, F. (2016). Obstacle avoidance under automated steering: Impact on driving and gaze behaviours. Transportation Research Part F: Traffic Psychology and Behaviour, 43, 315-324. DOI:10.1016/j.trf.2016.09.007
  29. NHTSA, (2013). Department of Transportation Releases Policy on Automated Vehicle Development. National Highway Traffic Safety Administration.
  30. Peng, Q., & Iwaki, S. (2020). Visual attention of young and older drivers in takeover tasks of highly automated driving. In Human Aspects of IT for the Aged Population. Technologies, Design and User Experience: 6th International Conference(pp. 210-221). Springer International Publishing. DOI: 10.1007/978-3-030-50252-2_16
  31. Politis, I., Brewster, S., & Pollick, F. (2015). Language-based multimodal displays for the handover of control in autonomous cars. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 3-10. Nottingham, UK: ACM. DOI: 10.1145/2799250.2799262
  32. Reimer, B., Mehler, B., & Coughlin, J. F. (2016). Reductions in self-reported stress and anticipatory heart rate with the use of a semi-automated parallel parking system. Applied Ergonomics, 52, 120-127. DOI: 10.1016/j.apergo.2015.07.008
  33. Rendon-Velez, E., Van Leeuwen, P. M., Happee, R., Horvath, I., van der Vegte, W. F., & de Winter, J. C. (2016). The effects of time pressure on driver performance and physiological activity: A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 41, 150-169. DOI: 10.1016/j.trf.2016.06.013
  34. Risser, R. (2019). The Safety of Intelligent Driver Support Systems: Design, Evaluation and Social Perspectives. CRC Press.
  35. Saito, Y., Raksincharoensak, P. (2016). Shared control in risk predictive braking maneuver for preventing collisions with pedestrians. IEEE Transactions on Intelligent Vehicles, 1, 314-324.
  36. So, J. J., Park, S., Kim, J., Park, J., & Yun, I. (2021). Investigating the impacts of road traffic conditions and driver's characteristics on automated vehicle takeover time and quality using a driving simulator. Journal of Advanced Transportation, 1-13. DOI: 10.1155/2021/8859553
  37. Urlings, J. H., van Beers, M., Cuenen, A., Brijs, K., Brijs, T., Jongen, E. M. (2018). The relation between reinforcement sensitivity and self-reported, simulated and on-road driving in older drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 56, 466-476. DOI: 10.1016/j.trf.2018.05.021
  38. van der Heiden, R. M., Iqbal, S. T., & Janssen, C. P. (2017). Priming drivers before handover in semiautonomous cars. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 392-404. Denver, Colorado, USA: ACM. DOI: 10.1145/3025453.3025507
  39. Wyche, N. J., Edwards, M., & Goodhew, S. C. (2024). Different deployments of attentional breadth selectively predict UFOV task performance in older adults. Cognitive Research: Principles and Implications, 9(1), 42. DOI: 10.1186/s41235-024- 00569-3
  40. Yoon, S. H., Kim, Y. W., & Ji, Y. G. (2019). The effects of takeover request modalities on highly automated car control transitions. Accident Analysis and Prevention. 123, 150-158. DOI: 10.1016/j.aap.2018.11.018
  41. Yu, D., Park, C., Choi, H., Kim, D., & Hwang, S. H. (2021). Takeover safety analysis with driver monitoring systems and driver-vehicle interfaces in highly automated vehicles. Applied Sciences, 11(15), 6685. DOI: 10.1177/0018720818814963