• Title/Summary/Keyword: 제어권 전환

Search Result 33, Processing Time 0.022 seconds

Analysis of Factors Affecting the Take-over Time of Automated Vehicles Using a Meta-analysis (메타분석을 이용한 자율주행차 제어권 전환 소요시간 영향요인 도출)

  • Lee, Kyeongjin;Park, Sungho;Park, Giok;Park, Jangho;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.167-189
    • /
    • 2022
  • In the case of SAE autonomous driving levels 2 and 3, since complete autonomous driving is impossible, the take-over process is essential, and take-over time(TOT) is the most important factor in determining the safety of the autonomous driving system. Accordingly, research on TOT is being actively conducted, but each research is independently conducted and general conclusions that integrate various research results are required. Therefore, in this study, the factors affecting TOT were analyzed using meta-analysis, which integrates the results of individual studies and presents an integrated opinion. As a result of meta-analysis, a total of 10 influencing factors were selected, and most of them were related to the non-driving related task(NDRT) type. In addition, implications for the future research direction of take-over and NDRT were presented.

Analysis of Take-over Time and Stabilization of Autonomous Vehicle Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 자율주행자동차 제어권 전환 소요시간 및 안정화 특성 분석)

  • Park, Sungho;Jeong, Harim;Kwon, Cheolwoo;Kim, Jonghwa;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.31-43
    • /
    • 2019
  • Take-overs occur in autonomous vehicles at levels 3 and 4 based on SAE. For safe take-over, it is necessary to set the time required for diverse drivers to complete take-over in various road conditions. In this study, take-over time and stabilization characteristics were measured to secure safety of take-over in autonomous vehicle. To this end, a virtual driving simulator was used to set up situations similar to those on real expressways. Fifty drivers with various sexes and ages participated in the experiment where changes in traffic volume and geometry were applied to measure change in takeover time and stabilization characteristics according to various road conditions. Experimental results show that the average take-over time was 2.3 seconds and the standard deviation was 0.1 second. As a result of analysis of stabilization characteristics, there was no difference in take-over stabilization time due to the difference of traffic volume, and there was a significant difference by curvature changes.

Analyzing the Impact of Changes in the Driving Environmenton the Stabilization Time of Take-over in Conditional Automation (조건부 자율주행시 주행환경 변화에 따른 제어권 전환 안정화 시간 영향 분석)

  • Sungho Park;Kyeongjin Lee;Jungeun Yoon;Yejin Kim;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.246-263
    • /
    • 2023
  • The stabilization time of take-over refers to the time it takes for driving to stabilize after the take-over. Following a take-over request from an automated driving system, the driver must become aware of the road driving environment and perform manual driving, making it crucial to clearly understand the relationship between the driving environment and stabilization time of take-over. However, previous studies specifically focusing on stabilization time after take-over are rare, and research considering the driving environment is also lacking. To address this, our study conducted experiments using a driving simulator to observe take-over transitions. The results were analyzed using a liner mixed model to quantitatively identify the driving environment factors affecting the stabilization time of take-over. Additionally, coefficients for stabilization time based on each influencing factor were derived.

A Study on the Efficient Information Delivery of Take-Over Request for Semi-Autonomous Vehicles (반자율주행 차량의 제어권 전환 상황에서 효율적 정보 제공 방식에 관한 연구)

  • Park, Cheonkyu;Kim, Dongwhan
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.70-82
    • /
    • 2022
  • At the current stage of a semi-autonomous vehicle, there are situations in which the vehicle has to request take-over control to the driver quickly. However, current self-driving cars use only simple messages and warning sounds to notify drivers when handing over control, so they do not adequately convey considerations of individual characteristics or explanations of various emergent situations. This study investigated how visual and auditory information and the efficacy of drivers in self-driving cars can improve efficient take-over requests between the car and the driver. We found that there were significant differences in driver's cognitive load, reliability, safety, usability, and usefulness according to the combination of three visual and auditory information provided in the experiment of the take-over request situation. The results of this study are expected to help design self-driving vehicles that can communicate more safely and efficiently with drivers in urgent control transition situations.

Development of Safety Evaluation Scenario for Autonomous Vehicle Take-over at Expressways (고속도로 자율주행자동차 제어권 전환 안전성 평가를 위한 시나리오 개발)

  • Park, Sungho;Jeong, Harim;Kim, Kyung Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2018
  • In the era of the 4th Industrial Revolution, research and development on autonomous vehicles have been actively conducted all over the world. Under these international trends, the Ministry of Land, Infrastructure and Transport is actively promoting the development of autonomous vehicles aiming at commercialization of autonomous vehicles at level 3 or higher by 2020. In the level 3 autonomous vehicle, it is essential to transfer control between the driver and the vehicle according to driving situations. Prior to the full-fledged autonomous vehicle age, this study developed a representative scenario for the safety evaluation on take-over on expressways. To accomplish this, we developed a highway driving scenario first, and then developed six control transition scenarios based on 2014 highway traffic accident data and take-over data. The variables to be considered in the developed scenarios are divided into drivers, vehicles, and environmental factors. A total of 36 variables are selected.

The Preliminary Study on Driver's Brain Activation during Take Over Request of Conditional Autonomous Vehicle (조건부 자율주행에서 제어권 전환 시 운전자의 뇌 활성도에 관한 예비연구)

  • Hong, Daye;Kim, Somin;Kim, Kwanguk
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.101-111
    • /
    • 2022
  • Conditional autonomous vehicles should hand over control to the driver according on driving situations. However, if the driver is immersed in a non-driving task, the driver may not be able to make suitable decisions. Previous studies have confirmed that the cues enhance take-over performance with a directional information on driving. However, studies on the effect of take-over cues on the driver's brain activities are rigorously investigated yet. Therefore, this study we evaluates the driver's brain activity according to the take-over cue. A total of 25 participants evaluated the take-over performance using a driving simulator. Brain activity was evaluated by functional near-infrared spectroscopy, which measures brain activity through changes in oxidized hemoglobin concentration in the blood. It evaluates the activation of the prefrontal cortex (PFC) in the brain region. As a result, it was confirmed that the driver's PFC was activated in the presence of the cue so that the driver could stably control the vehicle. Since this study results confirmed that the effect of the cue on the driver's brain activity, and it is expected to contribute to the study of take-over performance on biomakers in conditional autonomous driving in future.

Effects of Situation Awareness and Decision Making on Safety, Workload and Trust in Autonomous Vehicle Take-over Situations (자율주행 자동차의 제어권 전환상황에서 상황인식 및 의사결정 정보 제공이 운전자에게 미치는 영향)

  • Kim, Jihyun;Lee, Kahyun;Byun, Youngsi
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.21-29
    • /
    • 2019
  • Take-over requests in semi-autonomous cars must be handled properly in the case of road obstacles or curved roads in order to avoid accidents. In these situations, situation awareness and appropriate decision making are essential for distracted drivers. This study used a driving simulator to investigate the components of auditory-visual information systems that affect safety, workload, and trust. Auditory information consisted of either voice guidance providing situation awareness for the take-over or a beep sound that only alerted the driver. Visual information consisted of either a screen showing how to maneuver the vehicle or only an icon indicating a take-over situation. By providing auditory information that increased situation awareness and visual information that aided decision making, trust and safety increased, while workload decreased. These results suggest that the levels of situation awareness and decision making ability affect trust, safety, and workload for drivers.

Interaction Design of Take-Over Request for Semi-Autonomous Driving Vehicle : Comparative Experiment between HDD and HUD (반자율주행 차량의 제어권 전환 요청(TOR) 인터랙션 디자인 연구 : HDD와 HUD 비교 실험을 중심으로)

  • Kim, Taek-Soo;Choi, Song-A;Choi, Junho
    • Design Convergence Study
    • /
    • v.17 no.4
    • /
    • pp.17-29
    • /
    • 2018
  • In the semi-autonomous vehicle, before reaching a fully autonomous driving stage, it is imperative for the system to issue a take-over request(TOR) that asks a driver to operate manually in a specific situation. The purpose of this study is to compare whether head-up display(HUD) is a better human-vehicle interaction than head-down display(HUD) in the event of TOR. Upon recognition of TOR in the experiment with a driving simulator, participants were prompted to switch over to manual driving after performing a secondart task, that is, playing a game, while in auto-driving mode. The results show that HUD is superior to HDD in 'ease of use' and 'satisfaction' although there is no significant difference in reaction time and subjective workload. Therefore, designing secondary tasks through HUD during autonomous driving situation improves the user experience of the TOR function. The implication of this study lies in the establishing an empirical case for setting up UX design guidelines for autonomous driving context.

A Study of the DSSAD Data Elements Derivation through Autonomous Driving Data Analysis on Expressways (자동차 전용도로 자율주행 데이터 분석을 통한 DSSAD 기록항목 도출)

  • Seunghwa Hyun;Jinwoo Son;Youngchul Oh;Byungyong You
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.97-106
    • /
    • 2024
  • The Data Storage System for Automated Driving(DSSAD) is a system that records driving information of Lv.4 or higher autonomous vehicles and is different from EDR that records car information in emergency situations. The study of DSSAD recordings is important for responding to various events that may occur in the future commercialization of Lv.4 autonomous vehicles. Therefore, in this study, we conducted a expressway automated driving demonstration and analyzed the collected data to derive the recording elements of DSSAD. During our two-year demonstration of autonomous driving on expressways, we collected and analyzed instances of disengagement. Our findings indicate that 51.6% of disengagement on expressways occurred during lane changes. From the study, we have identified DSSAD record elements for analyzing disengagement situations. Furthermore, implications of future research direction of disengagement analysis were presented.

Analysis of the Influence of Road·Traffic Conditions and Weather on the Take-over of a Conditional Autonomous Vehicle (도로·교통 조건 및 기상 상황이 부분 자율주행자동차의 제어권전환에 미치는 영향 분석)

  • Park, Sungho;Yun, YongWon;Ko, Hangeom;Jeong, Harim;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.235-249
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport established safety standards for Level 3 autonomous vehicles for the first time in the world in December 2019, and specified the safety standards for conditional autonomous driving systems. Accordingly, it is necessary to analyze the influence of various driving environments on take-over. In this study, using a driving simulator, we investigated how traffic conditions and weather conditions affect take-over time and stabilization time. The experimental procedure was conducted in the order of preliminary training, practice driving, and test driving, and the test driving was conducted by dividing into a traffic density and geometry experiment and a weather environment experiment. As a result of the experiment, it was analyzed that the traffic volume and weather environment did not affect the take-over time and take-over stabilization time, and only the curve radius affects take-over stabilization time.