DOI QR코드

DOI QR Code

Effects of Voluntary Intrathoracic Pressure Adjustments on Prefrontal Brain Function and Cerebrovascular Dynamics

자발적인 흉강 내압 조정이 전전두엽 뇌기능 변화 및 뇌혈관 역학에 미치는 영향

  • Ju-Yeon Jung ;
  • Yeong-Bae Lee ;
  • Chang-Ki Kang
  • 정주연 (가천대학교 휴먼보건과학융합연구소) ;
  • 이영배 (가천대학교 의과대학 신경과) ;
  • 강창기 (가천대학교 의과학대학 방사선학과)
  • Received : 2024.05.23
  • Accepted : 2024.07.17
  • Published : 2024.09.30

Abstract

This study aimed to investigate the effects of voluntary intrathoracic pressure adjustment during the Valsalva maneuver (VM) on changes in prefrontal brain function and cerebral blood flow dynamics using diagnostic ultrasound and near-infrared spectroscopy (NIRS). Sixteen healthy adults performed VM by adjusting their expiratory pressure. Their regional oxygen saturation (rSO2) and oxidized hemoglobin (HbO) levels were measured to confirm changes in prefrontal lobe function. To confirm hemodynamic changes in cerebral blood vessels, this study measured peak systolic velocity (PSV), heart rate (HR), vascular stiffness (STIFF), and pulse wave velocity (PWV) in the common carotid artery before and after the VM. Results showed significant cerebrovascular physiological changes after 30mmHg VM. In particular, PSV increased significantly following VM, whereas PWV and STIFF significantly decreased. A similar trend was observed in 40mmHg VM to 30mmHg, but no significant change was observed except for HR, which showed a significant decrease. Furthermore, rSO2 tended to increase in the prefrontal region after preforming 30 and 40mmHg VM, but it did not show a significant difference. In contrast, HbO significantly decreased after performing 30 and 40mmHg VM. This trend did not show any difference depending on intrathoracic pressure. In conclusion, VM performance at both intrathoracic pressure levels has the same effect on brain function, but induces difference changes in cerebrovascular vessels' physiological function. Thus, at 40mmHg VM, it interferes with effective vascular relaxation due to high intrathoracic pressure. However, 30mmHg VM has an effective effect on cerebrovascular function by causing a significant increase in the elasticity of arterial blood vessels. Such VM performance can effectively improve cerebrovascular function.

본 연구는 진단초음파 및 근적외선분광법 (NIRS)을 사용하여 발살바 조작 (VM)을 수행하기 위한 자발적인 흉강 내 압력 조정이 전전두엽 뇌기능 및 뇌혈류 역학의 변화에 미치는 영향을 조사하고자 하였다. 건강한 성인 16명을 대상으로 30과 40mmHg VM을 수행하고, NIRS를 통해 대뇌산소포화도 (rSO2)와 산화헤모글로빈 (HbO)을 측정하였다. 그리고 진단초음파를 사용해 경동맥 (CCA)에서 최대혈류속도 (PSV)와 심박수 (HR)를 측정하고, 혈관경직도 (STIFF)와 맥파전달속도 (PWV)를 도출하여 VM 수행 전후 차이를 비교하였다. 그 결과 30mmHg VM 수행 후 PSV가 유의하게 증가하였고, PWV와 STIFF는 유의하게 감소하는 것으로 나타났다. 반면, 40mmHg에서는 HR의 유의한 감소만 나타났다. VM 수행 후 전전두엽의 뇌기능은 30과 40mmHg VM에서 rSO2가 증가하는 경향을 보였으나 유의한 변화는 나타나지 않았다. 반면 HbO는 VM 수행 후 유의한 감소를 보여주었다. 결론적으로, 두 가지 강도의 흉강 내압에서 VM 수행은 뇌기능에 동일한 영향을 미치는 것으로 나타났으나, 흉강 내압이 높은 경우에는 체압이 높아 효과적인 혈관 이완이 나타나지 않았다. 반면, 낮은 흉강 내압에서는 혈관의 탄성도가 크게 증가되어 뇌혈관의 기능 개선에 효과적으로 작용할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C1004355).

References

  1. Belfort, M. A., Tooke-Miller, C., Allen JR., J. C., Saade, G. R., Dildy, G. A., Grunewald, C., Nisell, H., & Herd, J. A. (2001). Changes in flow velocity, resistance indices, and cerebral perfusion pressure in the maternal middle cerebral artery distribution during normal pregnancy. Acta Obstetricia et Gynecologica Scandinavica, 80(2), 104-112. DOI: 10.1034/j.1600-0412.2001.080002104.x
  2. Bloomfield, G. L., Ridings, P. C., Blocher, C. R., Marmarou, A., & Sugerman, H. J. (1997). A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Critical Care Medicine, 25(3), 496.
  3. Fisher-Hubbard, A. O., Kesha, K., Diaz, F., Njiwaji, C., Chi, P., & Schmidt, C. J. (2016). Commode cardia-death by valsalva maneuver: a case series. Journal of Forensic Sciences, 61(6), 1541-1545. DOI: 10.1111/1556-4029.13196
  4. Harada, A., Okada, T., Niki, K., Chang, D., & Sugawara, M. (2002). On-line noninvasive one-point measurements of pulse wave velocity. Heart and Vessels, 17(2), 61-68. DOI: 10.1007/s003800200045
  5. Henderson, L. A., Macey, P. M., Macey, K. E., Frysinger, R. C., Woo, M. A., Harper, R. K., Alger, J. R., Yan-Go, F. L., & Harper, R. M. (2002). Brain responses associated with the Valsalva maneuver revealed by functional magnetic resonance imaging. Journal of Neurophysiology, 88(6), 3477-3486. DOI: 10.1152/jn.00107.2002
  6. Hershenson, J. A., Ro, P. S., Miao, Y., Tobias, J. D., Olshove, V., & Naguib, A. N. (2012). Changes in hemodynamic parameters and cerebral saturation during supraventricular tachycardia. Pediatric Cardiology, 33(2), 286-289. DOI: 10.1007/s00246-011-0133-3
  7. Iannuzzi, A., Licenziati, M. R., Acampora, C., Renis, M., Agrusta, M., Romano, L., Valerio, G., Panico, S., & Trevisan, M. (2006). Carotid artery stiffness in obese children with the metabolic syndrome. The American Journal of Cardiology, 97(4), 528-531. DOI: 10.1016/j.amjcard.2005.08.072
  8. Jefferson, A. L., Cambronero, F. E., Liu, D., Moore, E. E., Neal, J. E., Terry, J. G., Nair, S., Pechman, K. R., Rane, S., Davis, L. T., Gifford, K. A., Hohman, T. J., Bell, S. P., Wang, T. J., Beckman, J. A., & Carr, J. J. (2018). Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation, 138(18), 1951-1962. DOI: 10.1161/CIRCULATIONAHA.118.032410
  9. Jin, H.-K., Hwang, T.-Y., & Cho, S.-H. (2017). Effect of electrical stimulation on blood flow velocity and vessel size. Open Medicine, 12(1), 5-11. DOI: 10.1515/med-2017-0002
  10. Jones, S., Chiesa, S. T., Chaturvedi, N., & Hughes, A. D. (2016). Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Research, 16, 25-33. DOI: 10.1016/j.artres.2016.09.001
  11. Klein, L. J., Saltzman, H. A., Heyman, A., & Sieker, H. O. (1964). Syncope induced by the Valsalva maneuver: A study of the effects of arterial blood gas tensions, glucose concentration and blood pressure. The American Journal of Medicine, 37(2), 263-268. DOI: 10.1016/0002-9343(64)90010-5
  12. Madaminjonovna, K. Z. (2024). Etiological factors causing hypertension disease and measures to control it. American Journal of Pediatric Medicine and Health Sciences (2993-2149), 2(1), Article 1.
  13. Perry, B. G., De Hamel, T., Thomas, K. N., Wilson, L. C., Gibbons, T. D., & Cotter, J. D. (2020). Cerebrovascular haemodynamics during isometric resistance exercise with and without the Valsalva manoeuvre. European Journal of Applied Physiology, 120(2), 467-479. DOI: 10.1007/s00421-019-04291-7
  14. Perry, B. G., Mundel, T., Cochrane, D. J., Cotter, J. D., & Lucas, S. J. E. (2014). The cerebrovascular response to graded Valsalva maneuvers while standing. Physiological Reports, 2(2), e00233. DOI: 10.1002/phy2.233
  15. Pstras, L., Thomaseth, K., Waniewski, J., Balzani, I., & Bellavere, F. (2016a). Mathematical modelling of cardiovascular response to the Valsalva manoeuvre. Mathematical Medicine and Biology, dqw008. DOI: 10.1093/imammb/dqw008
  16. Pstras, L., Thomaseth, K., Waniewski, J., Balzani, I., & Bellavere, F. (2016b). The Valsalva manoeuvre: Physiology and clinical examples. Acta Physiologica, 217(2), 103-119. DOI: 10.1111/apha.12639
  17. Pulgar, V. M. (2015). Direct electric stimulation to increase cerebrovascular function. Frontiers in Systems Neuroscience, 9. DOI: 10.3389/fnsys.2015.00054
  18. Sakamoto, R., Sato, K., Ogoh, S., Kamoda, T., Neki, T., Katayose, M., & Iwamoto, E. (2023). Dynamic resistance exercise-induced pressor response does not alter hypercapnia-induced cerebral vasodilation in young adults. European Journal of Applied Physiology, 123(4), 781-796. DOI: 10.1007/s00421-022-05096-x
  19. Srivastav, S., Jamil, R. T., & Zeltser, R. (2024). Valsalva Maneuver. In StatPearls. StatPearls Publishing. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK537248/
  20. Tiecks, F. P., Douville, C., Byrd, S., Lam, A. M., & Newell, D. W. (1996). Evaluation of impaired cerebral autoregulation by the valsalva maneuver. Stroke, 27(7), 1177-1182. DOI: 10.1161/01.STR. 27.7.1177
  21. Tiecks, F. P., Lam, A. M., Matta, B. F., Strebel, S., Douville, C., & Newell, D. W. (1995). Effects of the valsalva maneuver on cerebral circulation in healthy adults. Stroke, 26(8), 1386-1392. DOI: 0.1161/01.STR.26.8.1386 https://doi.org/10.1161/01.STR.26.8.1386
  22. Yi, K.-K., Park, C., Yang, J., Lee, Y.-B., & Kang, C.-K. (2023). Quantitative thermal stimulation using therapeutic ultrasound to improve cerebral blood flow and reduce vascular stiffness. Sensors, 23(20), Article 20. DOI: 10.3390/s23208487
  23. Zieff, G. H., Heffernan, K., Stone, K., Fryer, S., Credeur, D., Hanson, E. D., Faulkner, J., & Stoner, L. (2019). The pressure-dependency of local measures of arterial stiffness. Journal of Hypertension, 37(5), 956. DOI: 10.1097/HJH.0000000000001998