DOI QR코드

DOI QR Code

우주항공 응용을 위한 내방사선 10T SRAM

Radiation-Hardened 10T SRAM Cell for Aerospace Applications

  • 박형우 (한국공학대학교 나노반도체공학과) ;
  • 조성훈 (한국공학대학교 나노반도체공학과)
  • Hyeong-Woo Park ;
  • Sung-Hun Jo (Dept. of Nano & Semiconductor Engineering, Tech University of Korea)
  • 투고 : 2024.09.10
  • 심사 : 2024.10.12
  • 발행 : 2024.10.31

초록

우주 방사선은 전자 장치의 신뢰성에 상당한 위협을 주고있다. 우주 방사선은 주로 태양에서 방출되는 고에너지 입자등으로 구성되며, 우주의 진공 상태에서는 이러한 입자를 흡수하거나 분산시킬 보호 장치가 부족하다. 이러한 고에너지 입자에 노출되면 반도체 장치, 특히 메모리 장치에 치명적인 손상을 일으킬 수 있으며, 이는 우주 산업 전반에 심각한 영향을 미칠 수 있다. 따라서 본 논문에서는 우주 방사선 환경에서 높은 신뢰성을 유지할 수 있는 새로운 메모리 비트 셀 설계 방식을 제안한다.

Cosmic radiation poses a significant threat to the reliability of electronic devices. Cosmic radiation mainly consists of high-energy particles emitted from the sun, and there is no protection device to absorb or disperse these particles in the vacuum of space. Exposure to these high-energy particles can cause fatal damage to semiconductor devices, especially memory devices, and this can have serious implications for the entire space industry. Therefore, in this paper, we propose a new memory bit cell design method that can maintain high reliability in a space radiation environment.

키워드

참고문헌

  1. C. Hang and J. Kim, "Design of In-Memory Computing Adder Using Low-Power 8+T SRAM," J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 2, 2023, pp. 291-298. https://doi.org/10.13067/JKIECS.2023.18.2.291
  2. J. Kim, "Implementation of a High Performance XOR-XNOR Circuit," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 2, 2022, pp. 351-356. https://doi.org/10.13067/JKIECS.2022.17.2.351
  3. L. Atias, A. Teman, and A. Fish, "A 13T radiation hardened SRAM bitcell for low-voltage operation," 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Monterey, CA, USA, 2013, pp. 1-2. https://doi.org/10.1109/S3S.2013.6716579
  4. T. Karnik and P. Hazucha, "Characterization of soft errors caused by single event upsets in CMOS processes," in IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 2, 2004, pp. 128-143. https://doi.org/10.1109/TDSC.2004.14
  5. S. Lin, Y. -B. Kim, and F. Lombardi, "Analysis and Design of Nanoscale CMOS Storage Elements for Single-Event Hardening With Multiple-Node Upset," in IEEE Transactions on Device and Materials Reliability, vol. 12, no. 1, 2012, pp. 68-77. https://doi.org/10.1109/TDMR.2011.2167233
  6. D. Patel and N. Gajjar, "Stability and single event upset analysis of rad-hard SRAM bit cells in CMOS 90nm technology," 2021 IEEE Madras Section Conference (MASCON), Chennai, India, 2021, pp. 1-4. https://doi.org/10.1109/MASCON51689.2021.9563487
  7. S. M. Jahinuzzaman, D. J. Rennie, and M. Sachdev, "A Soft Error Tolerant 10T SRAM Bit-Cell With Differential Read Capability," in IEEE Transactions on Nuclear Science, vol. 56, no. 6, 2009, pp. 3768-3773. https://doi.org/10.1109/TNS.2009.2032090
  8. J. Guo et al., "Design of Area-Efficient and Highly Reliable RHBD 10T Memory Cell for Aerospace Applications," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 5, 2018, pp. 991-994. https://doi.org/10.1109/TVLSI.2017.2788439
  9. R. Bishnoi, F. Oboril, and M. B. Tahoori, "Design of Defect and Fault-Tolerant Nonvolatile Spintronic Flip-Flops," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4, 2017, pp. 1421-1432. https://doi.org/10.1109/TVLSI.2016.2630315
  10. A. Seyedi, S. Aunet, and P. G. Kjeldsberg, "Nwise and Pwise: 10T Radiation Hardened SR AM Cells for Space Applications With High Reliability Requirements," in IEEE Access, vol. 10, no. 1, 2022, pp. 30624-30642. https://doi.org/10.1109/ACCESS.2022.3157402