DOI QR코드

DOI QR Code

A Review of Experimental and CFD Techniques to Characterize Macromixing via the Intensity of Segregation in a Rotating Bar Reactor

  • Abdelgadir Bashir Banaga (Research Center of Sudan for High Gravity Engineering and Technology) ;
  • Zeinab A. M. Khalel (Research Center of Sudan for High Gravity Engineering and Technology)
  • Received : 2024.07.22
  • Accepted : 2024.09.24
  • Published : 2024.11.01

Abstract

Several experimental and Computational Fluid Dynamics (CFD) methods have been developed to analyze and describe macromixing processes in a rotating bar reactor (RBR). This review provides an overview of the measurement methods of macromixing and delivers an assessment based on the concentration field. The concentrations are directly used to define the intensity of segregation (Is), and can reflect macromixing in a rotating bar reactor. Additionally, shows the investigations of the techniques available for portraying the intensity of segregation. This research is organized into three primary sections. The initial two sections focus on the overarching trends associated with the implementation of Conductivity, Planar Laser-Induced Fluorescence, and Electrical Resistance Tomography methods in RBR. An examination of the procedural steps, materials utilized, and the associated calculations was conducted. The final section addresses the simulation model of Computational Fluid Dynamics (CFD), detailing the necessary parameters, including the equations employed, boundary conditions, and the calculation procedures for determining the intensity of segregation. Subsequently, the study elucidates the feasibility of employing CFD as a precise technique for evaluating macromixing. The experimental techniques available were reviewed and compared in terms of their advantages, disadvantages, characterization capabilities, and scope of application.

Keywords

Acknowledgement

This work was supported by the Research Center of Sudan for High Gravity Chemical Engineering and Technology, Khartoum, Sudan.

References

  1. Schrimpf, M., Esteban, J., Warmeling, H., Farber, T., Behr, A. and Vorholt, A. J., "Taylor-Couette Reactor: Principles, Design, and Applications," AIChE J., 67(5), 1-24(2021).
  2. Banaga, A. B., Yue, X. J., Chu, G. W., Wu, W., Luo, Y. and Chen, J. F., "Micromixing Performance in a Rotating Bar Reactor," Can. J. Chem. Eng., 98(8), 1776-83(2020).
  3. Gao, H. L., Wen, Z. N., Sun, B. C., Zou, H. K. and Chu, G. W., "Intensification of Ozone Mass Transfer for Wastewater Treatment Using a Rotating Bar Reactor," Chem. Eng. Process. Process. Intensif., 176(2022).
  4. Liu, Z. H., Wang, X. T., Liu, W., Gao, H. L. and Chu, G. W., "Mass Transfer Enhancement in a Rotating Bar Reactor: Gas Dispersion and Liquid Disturbance," Chem. Eng. Process. Process. Intensif., 172, 108774(2021).
  5. Banaga, A. B., Li, Y. Bin, Li, Z. H., Sun, B. C. and Chu, G. W., "Experimental Investigation of the Mixing Efficiency via Intensity of Segregation along Axial Direction of a Rotating Bar Reactor," Can. J. Chem. Eng., 59, 153-59(2023).
  6. Zhao, H., Shao, L. and Chen, J. F., "High-Gravity Process Intensification Technology and Application," Chem. Eng. J., 156(3), 588-93(2010).
  7. Masuda, H., Yoshida, S., Horie, T., Ohmura, N. and Shimoyamada, M., "Flow Dynamics in Taylor-Couette Flow Reactor with Axial Distribution of Temperature," AIChE. J., 64(3), 1075-82(2018).
  8. Dusting, J. and Balabani, S., "Mixing in a Taylor-Couette Reactor in the Non-Wavy Flow Regime," Chem. Eng. Sci., 64(13), 3103-3111(2009).
  9. Nemri, M., Charton, S. and Climent, E., "Mixing and Axial Dispersion in Taylor-Couette Flows: The Effect of the Flow Regime," Chem. Eng. Sci., 139, 109-24(2015).
  10. Bin, L., Guang, L., Xiaogang, Y., Shanshan, L., Yingrong, X., Lu, L., and Yuan, Z., "Micro-mixing enhancement in a TaylorCouette Reactor Using the Inner Rotors with Various Surface Configurations," Chem. Eng. Process. Process. Intensif., 204, 109954(2024).
  11. Mao, Z. and Yang, C., "Micro-Mixing in Chemical Reactors: A Perspective," Chinese. J. Chem. Eng., 25(4), 381-90(2016).
  12. Woldemariam, M., Filimonov, R., Purtonen, T., Sorvari, J., Koiranen, T. and Eskelinen, H., "Mixing Performance Evaluation of Additive Manufactured Milli-Scale Reactors," Chem. Eng. Sci., 152, 26-34(2016).
  13. Wenzel, D. and Gorak, A., "Review and Analysis of Micromixing in Rotating Packed Beds," Chem. Eng. J., 345, 492-506(2018).
  14. Jaworski, Z. and Dudczak, J., "CFD Modelling of Turbulent Macromixing in Stirred Tanks. Effect of the Probe Size and Number on Mixing Indices," Comp. Chem. Eng., 22(1), S293-S298(1998).
  15. Luo, J. Z., Luo, Y., Chu, G. W., Arowo, M., Xiang, Y., Sun, B. C. and Chen, J. F., "Micromixing Efficiency of a Novel Helical Tube Reactor: CFD Prediction and Experimental Characterization," Chem. Eng. Sci., 155, 386-396(2016).
  16. Yang, K., Chu, G. W., Shao, L., Luo, Y. and Chen, J. F., "Micromixing Efficiency of Rotating Packed Bed with Premixed Liquid Distributor," Chem. Eng. J., 153(1-3), 222-226(2009).
  17. Baldyga, J., Bourne, J. R. and Yang, Y., "Influence of Feed Pipe Diameter on Mesomixing in Stirred Tank Reactors," Chem. Eng. Sci., 48(19), 3383-3390(1993).
  18. Villermaux, J. and Falk, L., "A Generalized Mixing Model for Initial Contacting of Reactive Fluids," Chem. Eng. Sci., 49(24), 5127-5140(1994).
  19. Barresi, A. A., Marchisio, D. and Baldi, G., "On the Role of Micro- and Mesomixing in a Continuous Couette-Type Precipitator," Chem. Eng. Sci., 54(13-14), 2339-2349(1999).
  20. Barrett, M., O'Grady, D., Casey, E. and Glennon, B., "The Role of Meso-Mixing in Anti-Solvent Crystallization Processes," Chem. Eng. Sci., 66(12), 2523-2534(2011).
  21. Baldyga, J. and Bourne, J. R., "A Fluid Mechanical Approach to Turbulent Mixing and Chemical Reaction Part II Micromixing in the Light of Turbulence Theory," Chem. Eng. Commun., 28(4-6), 243-258(1984).
  22. Tsai, B. I., Erickson, L. E. and Fan, L. T., "The Effect of Micromixing on Growth Processes," Biotechnol. Bioeng., 11(2), 181-205(1969).
  23. Nie, A., Gao, Z., Xue, L., Cai, Z., Evans, G. M. and Eaglesham, A., "Micromixing Performance and the Modeling of a Confined Impinging Jet Reactor/High Speed Disperser," Chem. Eng. Sci., 184, 14-24(2018).
  24. Kling, K. and Mewes, D., "Two-Colour Laser Induced Fluorescence for the Quantification of Micro- and Macromixing in Stirred Vessels," Chem. Eng. Sci., 59(7), 1523-1528(2004).
  25. Kukukova, A., Aubin, J. and Kresta, S. M., "A New Definition of Mixing and Segregation: Three Dimensions of a Key Process Variable," Chem. Eng. Res. Des., 2009, 87(4), 633-47(2009).
  26. Danckwerts, P. V., "The Definition and Measurement of Some Characteristics of Mixtures," Appl. Sci. Res. Sect. A., 3(4), 279-96 (1952).
  27. Bakker, R. A. and Akker, H. E. A., "Van Den, A Lagrangian Description of Micromixing in a Stirred Tank Reactor Using 1D-Micromixing Models in a CFD Flow Field," Chem. Eng. Sci., 51(11), 2643-2648(1996).
  28. Pagnini, G., "The Kernel Method to Compute the Intensity of Segregation for Reactive Pollutants: Mathematical Formulation," Atmos. Environ., 43(24), 3691-3698(2009).
  29. Buchmann, M. and Mewes, D., "Tomographic Measurements of Micro- and Macromixing Using the Dual Wavelength Photometry," Chem. Eng. J., 77(1-2), 3-9(2000).
  30. Luo, P., Jia, H., Xin, C., Xiang, G., Jiao, Z. and Wu, H., "An Experimental Study of Liquid Mixing in a Multi-orifice-impinging Transverse Jet Mixer Using PLIF," Chem. Eng. J., 228, 554-564(2013).
  31. Tahvildarian, P., Ng, H., D'Amato, M., Drappel, S., Ein-Mozaffari, F. and Upreti, S. R., "Using Electrical Resistance Tomography Images to Characterize the Mixing of Micron-Sized Polymeric Particles in a Slurry Reactor," Chem. Eng. J., 172(1), 517-525(2011).
  32. Battaglia, G., Romano, S., Raponi, A., Volpe, F., Bellanca, L., Ciofalo, M., Marchisio, D., Cipollina, A., Micale, G. and Tamburini, A., "Mixing Phenomena in Circular and Rectangular CrossSectional T-Mixers: Experimental and Numerical Assessment," Chem. Eng. Res. Des., 201, 228-241(2023).
  33. Arratia, P. E. and Muzzio, F. J., "Planar Laser-Induced Fluorescence Method for Analysis of Mixing in Laminar Flows," Ind. Eng. Chem. Res., 43(20), 6557-6568(2004).
  34. Taghavi, M. and Moghaddas, J., "Using PLIF/PIV Techniques to Investigate the Reactive Mixing in Stirred Tank Reactors with Rushton and Pitched Blade Turbines," Chem. Eng. Res. Des., 151, 190-206(2019).
  35. Mosorov, V., "Applications of Tomography in Reaction Engineering (Mixing Process)," Ind. Tomogr. Syst. Appl., 509-228(2015).
  36. Bowler, A. L., Bakalis, S. and Watson, N. J., "A Review of In-Line and on-Line Measurement Techniques to Monitor Industrial Mixing Processes," Chem. Eng. Res. Des., 153, 463-495(2019).
  37. Haddadi, M. M., Hosseini, S. H., Rashtchian, D. and Olazar, M., "Comparative Analysis of Different Static Mixers Performance by CFD Technique: An Innovative Mixer," Chinese J. Chem. Eng., 28(3), 672-684(2019).
  38. Zhang, Y.-D., Zhang, C.-L., Zhang, L.-L., Sun, B.-C., Chu, G.-W. and Chen, J.-F., "Chemical Probe Systems for Assessing Liquid-Liquid Mixing Efficiencies of Reactorse," Front. Chem. Sci. Eng., 17(10), 1323-1335(2023).
  39. Martinez-Delgadillo, S. A., Mollinedo P., H. R., Gutierrez, M. A., Barcelo, I. D. and Mendez, J. M., "Performance of a Tubular Electrochemical Reactor, Operated with Different Inlets, to Remove Cr(VI) from Wastewater," Comput. Chem. Eng., 34(4), 491-499(2009).
  40. Wilkinson, N. A. and Dutcher, C. S., "Axial Mixing and Vortex Stability to in Situ Radial Injection in Taylor-Couette Laminar and Turbulent Flows," J. Fluid. Mech., 854, 324-347(2018).
  41. Judat, B., Racina, A. and Kind, M., "Macro- and Micromixing in a Taylor-Couette Reactor with Axial Flow and Their Influence on the Precipitation of Barium Sulfate," Chem. Eng. Tech., 27(3), 287-292(2004).
  42. Banaga, A. B., "Mixing in a Rotating Bar Reactor and Application in Wastewater Treatment". Ph.D. Thesis, Beijing University of Chemical Technology, Beijing(2023).
  43. Li, G., Yang, X. and Ye, H., "CFD Simulation of Shear Flow and Mixing in a Taylor-Couette Reactor with Variable Cross-Section Inner Cylinders," Pow. Tech., 280, 53-66(2015).
  44. Habchi, C., Valle, D. Della, Lemenand, T., Anxionnaz, Z., Tochon, P., Cabassud, M., Gourdon, C. and Peerhossaini, H., "A New Adaptive Procedure for Using Chemical Probes to Characterize Mixing," Chem. Eng. Sci., 66(15), 3540-3550(2011).
  45. Patrizio, N. Di, Bagnaro, M., Gaunand, A., Hochepied, J. F., Horbez, D. and Pitiot, P., "Hydrodynamics and Mixing Performance of Hartridge Roughton Mixers: Influence of the Mixing Chamber Design," Chem. Eng. J., 283, 375-387(2015).
  46. Baldyga, J., Henczka, M. and Makowski, "Effects of Mixing on Parallel Chemical Reactions in a Continuous-Flow Stirred-Tank Reactor," Chem. Eng. Res. Des., 79(8), 895-900(2001).
  47. Hjertager, L. K., Hjertager, B. H., Deen, N. G. and Solberg, T., "Measurement of Turbulent Mixing in a Confined Wake Flow Using Combined PIV and PLIF," Can. J. Chem. Eng., 81(6), 1149-1158(2003).
  48. Alena, K., Benjamin N.l., and Suzanne M. K., "Impact of Sampling Method and Scale on the Measurement of Mixing and the Coefficient of Variance," AIChE. J., 54(12), pp. 3068-3083(2008).
  49. Cheng, D., Feng, X., Cheng, J., Yang, C. and Mao, Z. S., "Experimental Study on the Dispersed Phase Macro-Mixing in an Immiscible Liquid-Liquid Stirred Reactor," Chem. Eng. Sci., 126, 196-203(2014).
  50. Paul, E. L., Atiemo-obeng, V. A. and Kresta, S. M., Handbook of Industrial Mixing Edited By, Handbook of Industrial Mixing Science and Practice, (2015).
  51. Lehwald, A., Thevenin, D. and Zahringer, K., "Quantifying Macro-Mixing and Micro-Mixing in a Static Mixer Using Two-Tracer Laser-Induced Fluorescence," Exp. Fluids., 48(5), 823-836(2010).
  52. Houcine, I., Vivier, H., Plasari, E., David, R. and Villermaux, J., "Planar Laser Induced Fluorescence Technique for Measurements of Concentration Fields in Continuous Stirred Tank Reactors," Exp. Fluids., 22(2), 95-102(1996).
  53. Shen, B., Zhan, X., Sun, Z., He, Y., Long, J. and Li, X., "PIV Experiments and CFD Simulations of Liquid-Liquid Mixing in a Planetary Centrifugal Mixer (PCM)," Chem. Eng. Sci., 259, 117764(2022).
  54. Pronczuk, M. and Bizon, K., "Investigation of the Liquid Mixing Characteristic of an External-Loop Hybrid Fluidized-Bed Airlift Reactor," Chem. Eng. Sci., 210, 115231(2019).
  55. Li, X., Mi, Z., Tan, S., Wang, X., Wang, R. and Ding, H., "Experimental Investigation of Fluid Mixing inside a Rod Bundle Using Laser Induced Fluorescence," Prog. Nucl. Energy., 110, 90-102 (2018).
  56. Wang, X., Wang, R., Du, S., Chen, J. and Tan, S., "Flow Visualization and Mixing Quantification in a Rod Bundle Using Laser Induced Fluorescence," Nucl. Eng. Des., 305, 1-8(2016).
  57. Gaskey, S., Vacus, P., David, R., Villermaux, J. and Andre, J. C., "A Method for the Study of Turbulent Mixing Using Fluorescence Spectroscopy," Exp. Fluids., 9(3), 137-147(1990).
  58. Lozano, A., Yip, B. and Hanson, R. K., "Acetone: A Tracer for Concentration Measurements in Gaseous Flows by Planar Laser-Induced Fluorescence," Exp. Fluids., 13(6), 369-376(1992).
  59. Li, C., Wu, B., Zhang, J. and Luo, P., "Effect of Swirling Addition on the Liquid Mixing Performance in a T-Jets Mixer," Chines. J. Chem. Eng., 50, 108-116(2022).
  60. Eltayeb, A., Tan, S., Qi, Z., Ala, A. A. and Ahmed, N. M., "PLIF Experimental Validation of a FLUENT CFD Model of a Coolant Mixing in Reactor Vessel Down-Comer," Annals of Nucl. Energ., 128, 190-202(2018).
  61. Bedding, D. C. and Hidrovo, C. H., "Dual Fluorescence Ratiometric Technique for Micromixing Characterization," Exp. Fluids., 59(11), (1018).
  62. Carroll, B. and Hidrovo, C., "Droplet Collision Mixing Diagnostics Using Single Fluorophore LIF," Exp. Fluids., 53(5), 130-1316 (2012).
  63. Ascanio, G., "Mixing Time in Stirred Vessels: A Review of Experimental Techniques," Chines. J. Chem. Eng., 23(7), 1065-1076(2014).
  64. Luo, P., Cheng, Y., Wang, Z., Jin, Y. and Yang, W., "Study on the Mixing Behavior of Thin Liquid-Sheet Impinging Jets Using the PLIF Technique," Ind. Eng. Chem. Res., 45(2), 863-870(2006).
  65. Jardon-Perez, L. E., Gonzalez-Rivera, C., Trapaga-Martinez, G., Amaro-Villeda, A. and Ramirez-Argaez, M. A., "Experimental Study of Mass Transfer Mechanisms for Solute Mixing in a GasStirred Ladle Using the Particle Image Velocimetry and Planar Laser-Induced Fluorescence Techniques," Steel. Res. Int., 92(11), 1-11(2021).
  66. Moulijn, J., The Chemicfll Processing Pmnt, World Wide Web Internet And Web Information Systems, (2004).
  67. Rida, Z., Cazin, S., Lamadie, F., Dherbecourt, D., Charton, S., and Climent, E., "Experimental Investigation of Mixing Efficiency in Particle-Laden Taylor-Couette Flows," Exp. Fluids., 60(61), (2019).
  68. Walker, D. A., "A Fluorescence Technique for Measurement of Concentration in Mixing Liquids," J. Physics. E: Scient. Inst., 20(2), 217-224(1987).
  69. Coppeta, J. and Rogers, C., "Dual Emission Laser Induced Fluorescence for Direct Planar Scalar Behavior Measurements," Exp. Fluids., 25(1), 1-15(1998).
  70. Saylor, J. R., "Photobleaching of Disodium Fluorescein in Water," Exp. Fluids., 18(6), 445-447(1995).
  71. Crimaldi, J. P., "The Effect of Photobleaching and Velocity Fluctuations on Single-Point LIF Measurements," Exp. Fluids., 23(4), 325-330(1997).
  72. Larsen, L. G. and Crimaldi, J. P., "The Effect of Photobleaching on PLIF," Exp. Fluids., 41(5), 803-812(2006).
  73. Unger, D. R. and Muzzio, F. J., "Laser-Induced Fluorescence Technique for the Quantification of Mixing in Impinging Jets," AIChE. J., 45(12), 2477-2486(1999).
  74. Bruchhausen, M., Guillard, F. and Lemoine, F., "Instantaneous Measurement of Two-Dimensional Temperature Distributions by Means of Two-Color Planar Laser Induced Fluorescence (PLIF)," Exp. Fluids., 38(1), 123-131(2005).
  75. Lemoine, F., Antoine, Y., Wolff, M. and Lebouche, M., "Simultaneous Temperature and 2D Velocity Measurements in a Turbulent Heated Jet Using Combined Laser-Induced Fluorescence and LDA," Exp. Fluids., 26(4), 315-323(1999).
  76. Laidlaw, I. M. S. and Smart, P. L., "An Evaluation of Some Fluorescent Dyes for Water Tracing," Water. Res. Res., 13(1), 15-33 (1977).
  77. Fonte, S. M. W. B. P. M. A. K. C. P., "Investigation of Mixing Miscible Liquids with High Viscosity Contrasts in Turbulently Stirred Vessels Using Electrical Resistance Tomography," Chem. Eng. J., 486, 149712(2024).
  78. Sharifi, M. and Young, B., "Electrical Resistance Tomography (Ert) Applications to Chemical Engineering," Chem. Eng. Res. Des., 91(9), 1625-1645(2013).
  79. Stephenson, D. R., Cooke, M., Kowalski, A. and York, T. A., "Determining Jet Mixing Characteristics Using Electrical Resistance Tomography," Flow Meas. Instrum., 18(5-6), 204-210(2007).
  80. Jegatheeswaran, S. and Ein-Mozaffari, F., "Investigation of the Detrimental Effect of the Rotational Speed on Gas Holdup in Non-Newtonian Fluids with Scaba-Anchor Coaxial Mixer: A Paradigm Shift in Gas-Liquid Mixing," Chem. Eng. J., 383, 123118(2019).
  81. Kazemzadeh, A., Ein-Mozaffari, F. and Lohi, A., "Mixing of Highly Concentrated Slurries of Large Particles: Applications of Electrical Resistance Tomography (ERT) and Response Surface Methodology (RSM)," Chem. Eng. Res. Des., 143, 226-240(2019).
  82. Park, B. G., Moon, J. H., Lee, B. S. and Kim, S., "An Electrical Resistance Tomography Technique for the Monitoring of a Radioactive Waste Separation Process," Int. Commun. Heat. Mass. Transf., 35(10), 1307-1310(2008).
  83. Jin, H., Wang, M. and Williams, R. A., "Analysis of Bubble Behaviors in Bubble Columns Using Electrical Resistance Tomography," Chem. Eng. J., 130(2-3), 179-185(2007).
  84. Bolton, G. T., Hooper, C. W., Mann, R. and Stitt, E. H., "Flow Distribution and Velocity Measurement in a Radial Flow Fixed Bed Reactor Using Electrical Resistance Tomography," Chem. Eng. Sci., 59(10), 1989-1997(2004).
  85. Bond, J., Cullivan, J. C., Climpson, N., Dyakowski, T., Faulks, I., Jia, X., Kostuch, J. A., Payton, D., "Industrial Monitoring of Hydrocyclone Operation Using Electrical Resistance Tomography," 1st World Congr. Ind. Process Tomogr, 12(10), 102-107(1999).
  86. Zbib, H., Ebrahimi, M., Ein-Mozaffari, F. and Lohi, A., "Hydrodynamic Behavior of a 3-D Liquid-Solid Fluidized Bed Operating in the Intermediate Flow Regime - Application of Stability Analysis, Coupled CFD-DEM, and Tomography," Ind. Eng. Chem. Res., 57(49), 16944-16957(2018).
  87. Mann, R., Dickin, F. J., Wang, M., Dyakowski, T., Williams, R. A., Edwards, R. B., Forrest, A. E. and Holden, P. J., "Application of Electrical Resistance Tomography to Interrogate Mixing Processes at Plant Scale," Chem. Eng. Sci., 52(13), 2087-2097(1997).
  88. Stanley, S. J. and Bolton, G. T., "A Review of Recent Electrical Resistance Tomography (ERT) Applications for Wet Particulate Processing," Part. Part. Syst. Charact., 25(3), 207-215(2008).
  89. Spidla, M., Sinevic, V., Jahoda, M. and MacHon, V., "Solid Particle Distribution of Moderately Concentrated Suspensions in a Pilot Plant Stirred Vessel," Chem. Eng. J., 113(1), 73-82(2005).
  90. Yenjaichon, W., Pageau, G., Bhole, M., Bennington, C. P. J. and Grace, J. R., "Assessment of Mixing Quality for an Industrial Pulp Mixer Using Electrical Resistance Tomography," Can. J. Chem. Eng., 89(5), 996-1004(2011).
  91. Pakzad, L., Ein-Mozaffari, F. and Chan, P., "Measuring Mixing Time in the Agitation of Non-Newtonian Fluids through Electrical Resistance Tomography," Chem. Eng. Tech., 31(12), 1838-1845(2008).
  92. Hosseini, S., Patel, D., Ein-Mozaffari, F. and Mehrvar, M., "Study of Solid-Liquid Mixing in Agitated Tanks through Electrical Resistance Tomography," Chem. Eng. Sci., 65(4), 1374-1384(2009).
  93. Carletti, C., Montante, G., Westerlund, T. and Paglianti, A., "Analysis of Solid Concentration Distribution in Dense Solid-Liquid Stirred Tanks by Electrical Resistance Tomography," Chem. Eng. Sci., 119, 53-64(2014).
  94. Mirshekari, F. and Pakzad, L., "Mixing of Oil in Water Through Electrical Resistance Tomography and Response Surface Methodology," Chem. Eng. Tech., 42(5), 1101-1115(2019).
  95. Maluta, F., Montante, G. and Paglianti, A., "Analysis of Immiscible Liquid-Liquid Mixing in Stirred Tanks by Electrical Resistance Tomography," Chem. Eng. Sci., 227, 115898(2020).
  96. Yao, Z., Alberini, F., Montante, G. and Paglianti, A., "In-Line Monitoring of Mixing Performance for Smart Processes in Tubular Reactors," Chem. Eng. Res. Des., 194, 678-692(2023).
  97. Qureshi, M. F., Ali, M. H., Ferroudji, H., Rasul, G., Khan, M. S., Rahman, M. A., Hasan, R. and Hassan, I., "Measuring Solid Cuttings Transport in Newtonian Fluid across Horizontal Annulus Using Electrical Resistance Tomography (ERT)," Flow Meas. Instrum., 77, 101841(2020).
  98. Alberini, F., Simmons, M. J. H., Ingram, A. and Stitt, E. H., "Assessment of Different Methods of Analysis to Characterise the Mixing of Shear-Thinning Fluids in a Kenics KM Static Mixer Using PLIF," Chem. Eng. Sci., 112, 152-169(2014).
  99. Li, L., Wang, K., Zhao, Q., Gao, Q., Zhou, H., Jiang, J. and Mei, W., "A Critical Review of Experimental and CFD Techniques to Characterize the Mixing Performance of Anaerobic Digesters for Biogas Production," Rev. Environ. Sci. Biotechnol., 21(3), 665-689(2022).
  100. Forte, G., Albano, A., Simmons, M. J. H., Stitt, H. E., Brunazzi, E. and Alberini, F., "Assessing Blending of Non-Newtonian Fluids in Static Mixers by Planar Laser-Induced Fluorescence and Electrical Resistance Tomography," Chem. Eng. Tech., 42(8), 1602-1610(2019).
  101. Parvizian, F., Rahimi, M. and Azimi, N., "Macro- and Micromixing Studies on a High Frequency Continuous Tubular Sonoreactor," Chem. Eng. Process. Process Intensif., 57-58, 8-15(2012).
  102. Mohammadi, S. and Boodhoo, K. V. K., "Online Conductivity Measurement of Residence Time Distribution of Thin Film Flow in the Spinning Disc Reactor," Chem. Eng. J., 207-208, 885-894 (2012).
  103. Zheng, H., Huang, Z., Liao, Z., Wang, J., Yang, Y. and Wang, Y., "Computational Fluid Dynamics Simulations and Experimental Validation of Macromixing and Flow Characteristics in Low-Density Polyethylene Autoclave Reactors," Ind. Eng. Chem. Res., 53(38), 14865-14875(2014).
  104. Xu, X., Zhang, J., Chen, J., Zhao, D., Zhang, J. and Qin, S., "Numerical Investigation of Mixing Performance for a Helical Tangential Porous Tube-in-Tube Microchannel Reactor," Chem. Eng. Process. Process Intensif., 200, 109766(2024).
  105. Liu, L., Yang, X., Yang, J., Li, G. and Guo, Y., "Effect of Hydrodynamic Heterogeneity on Micromixing Intensification in a Taylor-Couette Flow Reactor with Variable Configurations of Inner Cylinder," AIChE. J., 67(7), 1-13(2021).
  106. Liu, F., Yang, X. and Wang, R., "Micromixing Performance in a Taylor-Couette Reactor with Ribbed Rotors," Process. Artic., 11, 2058(2023).
  107. Vedantam, S., Joshi, J. B. and Koganti, S. B., "CFD Simulation of RTD and Mixing in the Annular Region of a Taylor-Couette Contactor," Ind. Eng. Chem. Res., 45(18), 6360-6367(2006).
  108. Yue, X.-J., "Flow and Mixing Characteritics of Rotating Bar Reactor," Ms.c. Thesis: Beijing University of Chemical Technology, Beijing(2019).