DOI QR코드

DOI QR Code

열전도층이 Ga2O3 Schottky Barrier Diodes에 미치는 방열 영향 분석

Thermal Management Impact of Heat Conductive Layers on Ga2O3 Schottky Barrier Diodes

  • 김예진 (광운대학교 전자재료공학과) ;
  • 이건희 (광운대학교 전자재료공학과) ;
  • 김민영 (광운대학교 전자재료공학과) ;
  • 박세림 (광운대학교 전자재료공학과) ;
  • 정승환 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Ye-Jin Kim (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Min-Yeong Kim (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Se-Rim Park (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Seung-Hwan Chung (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Department of Electric Materials Engineering, Kwangwoon University)
  • 투고 : 2024.07.08
  • 심사 : 2024.08.28
  • 발행 : 2024.11.01

초록

Gallium oxide (Ga2O3) is emerging as a next-generation power semiconductor material due to its excellent electrical properties, including an ultra-wide bandgap of approximately 4.8 eV and a breakdown electric field of about 7 MV/cm. However, its low thermal conductivity of around 0.13 W/cmK presents significant challenges to the performance and reliability of Ga2O3-based devices. In this study, we employed the Silvaco TCAD simulator to analyze the thermal and electrical characteristics of Ga2O3 Schottky barrier diodes (SBDs) with heat sinks of varying thermal conductivities. The results demonstrate that heat sinks with higher thermal conductivity effectively mitigate the temperature rise in the device, leading to an increase in current density. The limitation in heat dissipation due to parasitic on-state resistance not only affects device performance but also impacts long-term reliability. Therefore, this study contributes to the development of effective thermal management strategies for Ga2O3-based power semiconductors.

키워드

과제정보

This work was supported by the Technology Innovation Programs (20016102 and RS-2022-00144027), grants funded by the MOTIE of Korea, and the present research has been conducted by the Excellent researcher support project of Kwangwoon University in 2024.

참고문헌

  1. J. Shi, J. Zhang, L. Yang, M. Qu, D. C. Qi, and K.H.L. Zhang, Adv. Mater., 33, 2006230 (2021). doi: https://doi.org/10.1002/adma.202006230
  2. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (John Wiley & Sons, USA, 2014), p. 1.
  3. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol., 31, 034001 (2016). doi: https://doi.org/10.1088/0268-1242/31/3/034001
  4. Y. Qin, Z. Wang, K. Sasaki, J. Ye, and Y. Zhang, Jpn. J. Appl. Phys., 62, SF0801 (2023). doi: https://doi.org/10.35848/1347-4065/acb3d3
  5. D. Liu, Y. Huang, Z. Zhang, Z. Li, Y. Yan, D. Chen, S. Zhao, Q. Feng, J. Zhang, C. Zhang, and Y. Hao, J. Alloys Compd., 986, 174143 (2024). doi: https://doi.org/10.1016/j.jallcom.2024.174143
  6. A. Lu, A. Elwailly, Y. Zhang, and H. Y. Wong, ECS J. Solid State Sci. Technol., 11, 115001 (2022). doi: https://doi.org/10.1149/2162-8777/ac9e73
  7. W. Janke and A. Hapka, Microelectron. J., 43, 656 (2012). doi: https://doi.org/10.1016/j.mejo.2011.04.010
  8. Y. Qin, Z. Wang, K. Sasaki, J. Ye, and Y. Zhang, Jpn. J. Appl. Phys., 62, SF0801 (2023). doi: https://doi.org/10.35848/1347-4065/acb3d3
  9. M. A. Vadivelu, C. R. Kumar, and G. M. Joshi, Compos. Interfaces, 23, 847 (2016). doi: https://doi.org/10.1080/09276440.2016.1176853
  10. M. Xiao, B. Wang, J. Liu, R. Zhang, Z. Zhang, C. Ding, S. Lu, K. Sasaki, G. Q. Lu, C. Buttay, and Y. Zhang., IEEE Trans. Power Electron., 36, 8565 (2021). doi: https://doi.org/10.1109/TPEL.2021.3049966
  11. S. Chander, P. Singh, S. Gupta, D. S. Rawal, and M. Gupta, Def. Sci. J., 70, 511 (2020). doi: https://doi.org/10.14429/dsj.70.16360
  12. D. Zhou, L. Huang, J. Yuan, and C. Li, Ceram. Int., 47, 32160 (2021). doi: https://doi.org/10.1016/j.ceramint.2021.08.108