DOI QR코드

DOI QR Code

Integrated urban resilience framework: A comprehensive approach to pre- and post-disaster assessment for earthquake risk reduction

  • Ayse E. Ozsoy Ozbay (Department of Civil Engineering, Maltepe University) ;
  • Isil Sanri Karapinar (Department of Civil Engineering, Maltepe University) ;
  • Huseyin C. Unen (Yer Cizenler Mapping for Everyone Association)
  • 투고 : 2024.07.29
  • 심사 : 2024.10.05
  • 발행 : 2024.10.25

초록

In this study, a unified framework that integrates pre- and post-earthquake assessments of buildings was proposed to enhance urban disaster preparedness through the coordination of pre- and post- earthquake efforts. Within this framework, a case study based on the 2023 Kahramanmaraş Earthquake was performed comparing the distribution of seismic risk prioritization for 117 reinforced concrete buildings with their actual damage states observed during post-earthquake field inspections. In order to conduct pre-earthquake evaluation process, street-level images were employed using two different rapid visual screening methods. With the use of generated geospatial database enabling the efficient and reliable transmission of the data between both stages of the assessment procedures, the alignment and validation of pre- and post-earthquake evaluations of the buildings were achieved enhancing the coordination of seismic risk management strategies. By implementing the proposed joint framework in this study, an extensive seismic vulnerability evaluation on an urban scale could be achieved by optimizing the computational demands, cost and time required for the strategic planning activities.

키워드

참고문헌

  1. AFAD, Turkiye Deprem Haritalari Interaktif Web Uygulamasi. https://tdth.afad.gov.tr/ (Accessed date: 17 March 2023).
  2. Aldemir, A., Guvenir, E. and Sahmaran, M. (2020), "Rapid screening method for the determination of regional risk distribution of masonry structures", Struct. Saf., 85, 101959. https://doi.org/10.1016/j.strusafe.2020.101959.
  3. Aynur, S. and Meydanli Atalay, H. (2023), "Comparative analysis of existing reinforced concrete buildings damaged at different levels during past earthquakes using rapid assessment methods", Struct. Eng. Mech., 85(6), 793-808. https://doi.org/10.12989/sem.2023.85.6.793.
  4. Bhalkikar, A. and Kumar, R.P. (2021), "A comparative study of different rapid visual survey methods used for seismic assessment of existing buildings", Struct., 29, 1847-1860. https://doi.org/10.1016/j.istruc.2020.12.026.
  5. Brando, G., Cocco, G., Mazzanti, C., Peruch, M., Spacone, E., Alfaro, C., ... & Tarque, N. (2021), "Structural survey and empirical seismic vulnerability assessment of dwellings in the historical centre of Cusco, Peru", Int. J. Archit. Herit., 15(10), 1395-1423. https://doi.org/10.1080/15583058.2019.1685022.
  6. Brando, G., De Matteis, G. and Spacone, E. (2017b), "Predictive model for the seismic vulnerability assessment of small historic centres: Application to the inner Abruzzi Region in Italy", Eng. Struct., 153, 81-96. https://doi.org/10.1016/j.engstruct.2017.10.013.
  7. Brando, G., Pagliaroli, A., Cocco, G. and Di Buccio, F. (2020), "Site effects and damage scenarios: The case study of two historic centers following the 2016 Central Italy earthquake", Eng. Geol., 272, 105647. https://doi.org/10.1016/j.enggeo.2020.105647.
  8. Brando, G., Rapone, D., Spacone, E., O'Banion, M.S., Olsen, M.J., Barbosa, A.R., ... & Stravidis, A. (2017a). "Damage reconnaissance of unreinforced masonry bearing wall buildings after the 2015 Gorkha, Nepal Earthquake", Earthq. Spectra, 33, 243-273. https://doi.org/10.1193/010817eqs009m.
  9. CNN Turk (2023), Kahramanmaras'in Trabzon Caddesi'nde yasanan yikimin drone goruntuleri. https://www.cnnturk.com/video/turkiye/kahramanmarasintrabzon-caddesinde-yasanan-yikimin-drone-goruntuleri. (Accessed 17 Dec 2023)
  10. Cocco, G., Spacone, E. and Brando, G. (2024), "Seismic vulnerability assessment of urban areas made of adobe buildings through analytical and numerical methods: The case study of the historical center of Cusco (Peru)", Int. J. Disast. Risk Reduct., 112, 104786. https://doi.org/10.1016/j.ijdrr.2024.104786.
  11. CSB. Hasar Tespit Sorgulama. Available from https://hasartespit.csb.gov.tr/ (Accessed date: 2 October 2024)
  12. FEMA P-154 (2015), Rapid Visual Screening of Buildings for Potential Seismic Hazard: A Handbook, Washington, DC, FEMA.
  13. Hashemi, M. and Alesheikh, A.A. (2012), "Development and implementation of a GIS-based tool for spatial modeling of seismic vulnerability of Tehran", Nat. Hazard. Earth. Syst., 12, 3659-3670. https://doi.org/10.5194/nhess-12-3659-2012.
  14. Hiroyuki, M. and Midorikawa, S. (2006), "Updating GIS building inventory data using high-resolution satellite images for earthquake damage assessment: Application to Metro Manila, Philippines", Earthq. Spectra, 22(1), 151-68. https://doi.org/10.1193/1.2162940.
  15. Karimzadeh, S., Miyajima, M., Hassanzadeh, R., Amiraslanzadeh, R. and Kamel, B. (2014), "A GIS-based seismic hazard, building vulnerability and human loss assessment for the earthquake scenario in Tabriz", Soil Dyn Earthq Eng., 66, 263-280. https://doi.org/10.1016/j.soildyn.2014.06.026.
  16. Noura, H., Abed, M. and Mebarki, A. (2021), "Post-disaster damage assessment of structures by neural networks", Earthq. Struct., 21(4), 413-423. https://doi.org/10.12989/eas.2021.21.4.413.
  17. NRC/IRC (1992), Manual for Screening of Buildings for Seismic Investigation, National Research Council of Canada and Institute for Research in Construction.
  18. NZSEE (2006), Assessment and Improvement of the Structural Performance of Buildings in Earthquakes, New Zealand Society for Earthquake Engineering, Wellington, New Zealand.
  19. Oumedour, A. and Lazzali, F. (2022), "Modifier parameters and quantifications for seismic vulnerability assessment of reinforced concrete buildings", Earthq. Struct., 22(1), 83-94. https://doi.org/10.12989/eas.2022.22.1.083.
  20. Ozsoy Ozbay, A.E., Sanri Karapinar, I. and unen, H.C. (2020), "Visualization of seismic vulnerability of buildings with the use of a mobile data transmission and an automated GIS-based tool", Struct., 24, 50-58. https://doi.org/10.1016/j.istruc.2020.01.004.
  21. Raoufy, A.A., Kheyroddin, A. and Naderpour, H. (2024), "Rapid visual screening for seismic assessment of hospital buildings: A case study of Kabul City", J. Rehab. Civil Eng., 12(3), 1-16. https://doi.org/10.22075/jrce.2023.30600.1848.
  22. Rapone, D., Brando, G., Spacone, E. and De Matteis, G. (2018), "Seismic vulnerability assessment of historic centers: Description of a predictive method and application to the case study of Scanno (Abruzzi, Italy)", Int. J. Arch. Heritage, 12(7-8), 1171-1195. https://doi.org/10.1080/15583058.2018.1503373.
  23. Rodenas, J.L., Garcia-Ayllon, S. and Tomas, A. (2018), "Estimation of the buildings seismic vulnerability: A methodological proposal for planning Ante-Earthquake scenarios in urban areas", Appl. Sci., 8(7), 1208. https://doi.org/10.3390/app8071208.
  24. Sahar, L., Muthukumar, S. and French, S.P. (2010), "Using aerial imagery and GIS in automated building footprint extraction and shape recognition for earthquake risk assessment of urban inventories", IEEE Trans. Geosci. Remote Sens., 48(9), 3511-3520. https://doi.org/10.1109/TGRS.2010.2047260.
  25. Sanri Karapinar, I., Ozsoy Ozbay, A.E. and unen, H.C. (2021), "GIS-Based assessment of seismic vulnerability information of old masonry buildings using a mobile data validation system", J. Perform. Constr. Facil., 35(3), 04021009. https://doi.org/10.1061/(asce)cf.1943-5509.0001574.
  26. SDSVB (2019), Riskli Yapilarin Tespit Edilmesine Iliskin Esaslar, Cevre, Sehircilik ve Iklim Degisikligi Bakanligi, Ankara. (in Turkish)
  27. Sextos, A.G. (2008), "Computer-aided pre- and post-earthquake assessment of buildings involving database compilation, GIS visualization, and mobile data transmission", Comput. Aid. Civil Infrastr. Eng., 23, 59-73. https://doi.org/10.1111/j.1467-8667.2007.00513.x.
  28. Tesfamariam, S. and Saatcioglu, M. (2008), "Risk-based seismic evaluation of reinforced concrete buildings", Earthq. Spectra., 24(3), 795-821. https://doi.org/10.1193/1.2952767.
  29. Tischer, H., Mitchell, D. and McClure, G. (2014), "Adapting a rapid seismic screening method for the evaluation of school buildings", Can. J. Civil Eng., 41(11), 970-976. https://doi.org/10.1139/cjce-2013-0293.
  30. Tomas, A., Rodenas, J.L. and Garcia-Ayllon, S. (2017), "Proposal for new values of behaviour modifiers for seismic vulnerability evaluation of reinforced concrete buildings applied to Lorca (Spain) using damage data from the 2011 Earthquake", Bull. Earthq. Eng., 15(9), 3943-3962. https://doi.org/10.1007/s10518-017-0100-3.
  31. Yamazaki, F. (2001), "Applications of remote sensing and GIS for damage assessment", Structural Safety and Reliability, 1-12.
  32. Yazilim, G. and C izenler, Y. (2023), Turkey Earthquakes Building Damage Assessment Map. https://studio.foursquare.com/map/public/41870042-b0be-4b05-88fd-0fe72f130732. (Accessed date: 2 October 2024)
  33. Yucemen, M.S., O zcebe, G. and Pay, A.C. (2004), "Prediction of potential damage due to severe earthquakes", Struct. Saf., 26(3), 349-366. https://doi.org/10.1016/j.strusafe.2003.09.002.