참고문헌
- The Business Research Company, "UAV Drones Global Market Report 2024", https://www.researchandmarkets.com/report/unmanned-aerial-vehicles-uavs-drones
- K. Telli, O. Kraa, Y. Himeur, A. Ouamane, and M. Boumehraz, "A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs)", Systems, 11, 400, Nov 2023. DOI:10.3390/systems11080400
- Anna Jackman, "Police Drones: Uses, Challenges, Futures", https://research.reading.ac.uk/drone-geographies/wp-content/uploads/sites/271/2023/09/Police-report.pdf#:~:text=URL%3A%20https%3A%2F%2Fresearch.reading.ac.uk%2Fdrone
- O. H. Dahle, J. Rydberg, M. Dullweber, N. Peinecke and A. A. A. Bechina, "A proposal for a common metric for drone traffic density", International Conference on Unmanned Aircraft Systems (ICUAS), pp. 64-72, Dubrovnik, Croatia, Jun 2022. DOI: 10.1109/ICUAS54217.2022.9836143.
- Seth Cropsey, "Drone Warfare in Ukraine: Historical Context and Implications for the Future," https://www.hoover.org/research/drone-warfare-ukraine-historical-context-and-implications-future
- Lauren Kahn, "How Ukraine Is Using Drones Against Russia," https://www.cfr.org/in-brief/how-ukraine-using-drones-against-russia
- Kristen D. Thompson, "How the Drone War in Ukraine Is Transforming Conflict," https://www.cfr.org/article/how-dronewar-ukraine-transforming-conflict
- M. H. Rahman, Mohammad A. S. Sejan, M. A. Aziz, R. Tabassum, Jung-In Baik, and Hyoung-Kyu Song, "A Comprehensive Survey of Unmanned Aerial Vehicles Detection and Classification Using Machine Learning Approach: Challenges, Solutions, and Future Directions", 2024 Remote Sensing 16, no. 5: 879., Mar 2024. DOI:10.3390/rs16050879
- Olusiji O. Medaiyese, M. Ezuma, A. Lauf, and A. Adeniran, "Cardinal RF (CardRF): An Outdoor UAV/UAS/Drone RF Signals with Bluetooth and WiFi Signals Dataset", IEEE Dataport, Jul 2022. DOI:10.21227/1xp7-ge95
- U. Seidaliyeva, L. Ilipbayeva, K. Taissariyeva, N. Smailov, and E. Matson, "Advances and Challenges in Drone Detection and Classification Techniques: A State-of-the-Art Review", Sensors 24(1):125, Dec 2023. DOI: 10.3390/ s24010125.
- N. Al-lQubaydhi, A. Alenezi, T. Alanazi, A. Senyor, N. Alanezi, B. Alotaibi, M. Alotaibi, A. Razaque, and S. Hariri, "Deep learning for unmanned aerial vehicles detection: A review", Computer Science Review, Vol. 51, No. C, Jun 2024. DOI: 10.1016/j.cosrev.2023.100614.
- Olusiji O. Medaiyese, M. Ezuma, A. P. Lauf, and A. A. Adeniran, "Hierarchical Learning Framework for UAV Detection and Identification", IEEE Journal of Radio Frequency Identification, vol. 6, pp. 176-188, Mar 2022. DOI: 10.1109/JRFID.2022.3157653.
- Olusiji O. Medaiyese, M. Ezuma, A. P. Lauf, and Ismail Guvenc, "Wavelet transform analytics for RF-based UAV detection and identification system using machine learning", Pervasive and Mobile Computing, Volume 82, 101569, Jun 2022. DOI:10.1016/j.pmcj.2022.101569.
- Alam, Syed Samiul, Arbil Chakma, Md Habibur Rahman, Raihan Bin Mofidul, Md Morshed Alam, Ida Bagus Krishna Yoga Utama, and Yeong Min Jang, "RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach", Sensors 23, no. 9: 4202, April 2023. DOI:10.3390/s23094202
- Yan, Xiang, Bing Han, Zhigang Su, Jingtang Hao., "SignalFormer: Hybrid Transformer for Automatic Drone Identification Based on Drone RF Signals", Sensors 23, no. 22: 9098, November 2023. DOI:10.3390/s23229098
- Mohammad F. Al-Sa'd, Abdulla Al-Ali, Amr Mohamed, Tamer Khattab, and Aiman Erbad, "RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database", Future Generation Computer Systems, 100: 86-97, November, 2019. DOI:10.1016/j.future.2019.05.007
- M. S. Allahham, T. Khattab, and A. Mohamed, "Deep Learning for RF-Based Drone Detection and Identification: A Multi-Channel 1-D Convolutional Neural Networks Approach", 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 112-117, Doha, Qatar, February, 2020. DOI:10.1109/ICIoT48696.2020.9089657.
- Z. Oubrahim, A. Yassine, B. Mohamed, and O. Mohammed, "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review", Energies 16, no. 6: 2685, Mar 2023. DOI:10.3390/en16062685
- O. Brandes, J. Farley, M. Hinich, and U. Zackrisson, "The time domain and the frequency domain in time series analysis", The Swedish Journal of Economics, 25-42, Mar 1968. DOI:10.2307/3438983
- I. Nemer, S. Tarek, A. Irfan, Ansar Ul-Haque Yasar, and Mohammad A. R. Abdeen., "RF-Based UAV Detection and Identification Using Hierarchical Learning Approach", Sensors 21, no. 6: 1947, Mar 2021. DOI:10.3390/s21061947
- Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung and Henry H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proc. R. Soc. Lond. A.454903-995 March 1998. DOI:10.1098/rspa.1998.0193
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu, "LightGBM: A highly efficient gradient boosting decision tree", Advances in neural information processing systems 30, 2017.
- C. Candan, "Analysis and Further Improvement of Fine Resolution Frequency Estimation Method From Three DFT Samples", IEEE Signal Processing Letters, Vol. 20, No. 9, pp. 913-916, Sep 2013. DOI: 10.1109/LSP.2013.2273616.