과제정보
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다. (과제번호: RS-2023-00211810)
참고문헌
- S. Yu, K. Ma, Q. Bi, C. Bian, M. Ning, N. He, Y. Li, H. Liu, Y. Zheng, "MIL-VT:Multiple Instance Learning Enhanced Vision Transformer for Fundus Image Classification", Medical Image Computing and Computer Assisted Intervention, Vol. 12908, pp. 45-54, 2021. https://doi.org/10.1007/978-3-030-87237-3_5
- S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, A. Veit, "Understanding Robustness of Transformers for Image Classification", IEEE/CVF International Conference on Computer Vision, pp. 10231-10241, 2021. https://doi.org/10.48550/arXiv.2103.14586
- K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", 2014. https://doi.org/10.48550/arXiv.1409.1556
- T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, "Recurrent neural network based language model", Annual Conference of the International Speech Communication Association, pp. 1045-1048, 2010.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, "Attention Is All You Need", Advances in Neural Information Processing Systems, 2017. https://doi.org/10.48550/arXiv.1706.03762
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", International Conference on Learning Representation, 2021. https://doi.org/10.48550/arXiv.2010.11929
- A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lucic, C. Schmid, "ViViT: A Video Vision Transformer", IEEE/CVF International Conference on Computer Vision, pp. 6836-6846, 2021. https://doi.org/10.48550/arXiv.2103.15691
- Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. Wong, L. Chao, "Learning Deep Transformer Models for Machine Translation", Advances in Neural Information Processing Systems, pp. 2797-2806, 2017. https://doi.org/10.48550/arXiv.1706.03762
- K. Irie, A. Zeyer, R. Schluter, H. Ney, "Language Modeling with Deep Transformers", Computation and Language, Annual Conference of the International Speech Communication Association, 2019. https://doi.org/10.48550/arXiv.1905.04226
- Hashmi MF, Katiyar S, Keskar AG, Bokde ND, Geem ZW, "Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning", Diagnostics, Vol. 10, No. 6, pp. 417, 2020. https://doi.org/10.3390/diagnostics10060417
- M. Elemraid, M. Muller, D. Spencer, S. Rushton, R. Gorton, M. Thomas, K. Eastham, F. Hampton, A. Gennery, J. Clark, "Accuracy of the Interpretation of Chest Radiographs for the Diagnosis of Paediatric Pneumonia", PLoS ONE, Vol. 9, No. 8, 2014. https://doi.org/10.1371/journal.pone.0106051
- S. Park, G. Kim, Y. Oh, J. B. Seo, S. M. Lee, J. H. Kim, S. Moon, J. K. Lim, C. M. Park, J. C. Ye, "Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation", Nature Communications, Vol. 13, pp. 3848, 2022. https://doi.org/10.1038/s41467-022-31514-x
- T. Wang, Z. Nie, R. Wang, Q. Xu, H. Huang, H. Xu, F. Xie, X.-J. Liu, "PneuNet: deep learning for COVID-19 pneumonia diagnosis on chest X-ray image analysis using Vision Transformer", Medical & Biological Engineering & Computing, Vol. 61, pp. 1395, 2023. https://doi.org/10.1007/s11517-022-02746-2
- S. Singh, M. Kumar, A. Kumar, B. K. Verma, K. Abhishek, S. Selvarajan, "Efficient pneumonia detection using Vision Transformers on chest X-rays", Scientific Reports, Vol. 14, pp. 2487, 2024. https://doi.org/10.1038/s41598-024-52703-2
- C. Chen, Q. Fan, "CrossViT:Cross-attention Multi-Scale Vision Transformer for Image Classification", IEEE/CVF International Conference on Computer Vision, pp. 357-366, 2021. https://doi.org/10.48550/arXiv.2103.14899
- G. Okolo, S. Katsigiannis, N. Ramzan, "IEVIT: An enhanced vision transformer architecture for chest X-ray image classification", Computer Methods and Programs in Biomedicine, Vol. 226, 2022. https://doi.org/10.1016/j.cmpb.2022.107141
- H. Fang, J. Lee, N. Moosavi, I. Gurevych, "Transformers with Learnable Activation Functions", 2022. https://doi.org/10.48550/arXiv.2208.14111
- T. Li, F. Zhang, G. Xie, X. Fan, Y. Gao, M. Sun, "A high speed reconfigurable architecture for softmax and GELU in vision transformer", Electronics Letters, Vol. 59, No. 5, 2023. https://doi.org/10.1049/ell2.12751
- X. Mao, G. Qi, Y. Chen, X. Li, R. Duan, S. Ye, Y. He, H. Xue, "Towards Robust Vision Transformer", IEEE/CVF International Conference on Computer Vision and Pattern Recognition, pp. 12042-12051, 2022. https://doi.org/10.48550/arXiv.2105.07926
- Y. Bazi, L. Bashmal, M. Rahhal, R. Dayil, N. Ajlan, "Vision Transformers for Remote Sensing Image Classification", Remote Sensing, Vol. 13, No. 3, pp. 516, 2021. https://doi.org/10.3390/rs13030516
- K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", The International Conference on Learning Representations, 2015. https://doi.org/10.48550/arXiv.1409.1556
- K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition", IEEE/CVF International Conference on Computer Vision and Pattern Recognition, 2016. https://doi.org/10.48550/arXiv.1512.03385
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, "Going Deeper with Convolutions", IEEE/CVF International Conference on Computer Vision and Pattern Recognition, 2015. https://doi.org/10.48550/arXiv.1409.4842
- Z. Vujovic, "Classification Model Evaluation Metrics", International Journal of Advanced Computer Science and Applications, Vol. 12, No. 6, 2021. https://doi.org/10.14569/IJACSA.2021.0120670
- S. Hong, G. Lee, W. Jang, S. Kim, "Improving Sample Quality of Diffusion Models Using Self-Attention Guidance", IEEE/CVF International Conference on Computer Vision, 2023. https://doi.org/10.48550/arXiv.2210.00939
- Z. Chen, Y. Duan, W. Wang, J. He, T. Lu, J. Dai, Y. Qiao, "Vision Transformer Adapter for Dense Predictions", The International Conference on Learning Representations, 2023. https://doi.org/10.48550/arXiv.2205.08534