DOI QR코드

DOI QR Code

Study on Maximizing Scintillation Pixel Array Image by Changing Scintillator Bottom Surface Treatment in a 4 × 4 Array SiPM Photosensor with 3 mm × 3 mm Pixels for Improved Spatial Resolution

공간분해능 향상을 위한 3 mm × 3 mm 픽셀을 지닌 4 × 4 배열의 SiPM 광센서에서의 섬광체 바닥 면 처리의 변경을 통한 섬광 픽셀 배열 영상의 최대화 연구

  • Woojin Jo (Advanced Fuel Cycle Technology Division, Korea Atomic Energy Research Institute) ;
  • Seung-Jae Lee (Department of Radiological Science, Dongseo University)
  • 조우진 (한국원자력연구원 선진핵주기기술개발부) ;
  • 이승재 (동서대학교 방사선학과)
  • Received : 2024.10.02
  • Accepted : 2024.10.31
  • Published : 2024.10.31

Abstract

Preclinical positron emission tomography (PET) requires excellent spatial resolution because the subject of imaging is a very small animal. To achieve this, a detector is configured using fine scintillation pixels. In this study, we aim to increase the scintillation pixel array by processing the bottom surface of the scintillation pixels differently from the array of scintillation pixels that can be imaged in the same photosensor performed in the previous study. To this end, we designed a detector using DETECT2000, which can simulate light in the scintillator, and performed a simulation. The detector was configured from an 11 × 11 array to a 16 × 16 array, and the bottom surface was configured as a polished surface (POLISH) and a rough surface (GROUND) to obtain a flood image. As a result, it was confirmed that the scintillation pixel images were better separated on the GROUND surface than on the POLISH surface as the scintillation pixel array expanded. Furthermore, on the GROUND surface, it was confirmed that the peaks of the scintillation pixel images in the corner area were separated and imaged even in the 16 × 16 array.

전임상용 양전자방출촬영기기(positron emission tomography; PET)는 촬영 대상이 매우 작은 동물이므로 우수한 공간분해능이 요구된다. 이를 달성하기 위해 미세한 섬광 픽셀을 사용하여 검출기를 구성한다. 본 연구에서는 이전 연구에서 수행한 동일한 광센서에서 영상화가 가능한 섬광 픽셀의 배열에서 섬광 픽셀의 바닥 면에 대한 다른 면 처리를 통해 섬광 픽셀 배열을 늘리고자 한다. 이를 위해 섬광체 내에서 빛의 모사가 가능한 DETECT2000을 사용하여 검출기를 설계하고, 시뮬레이션을 수행하였다. 11 × 11 배열에서부터 16 × 16 배열까지 검출기를 구성하였으며, 바닥 면을 매끈한 면(POLISH)과 거친 면(GROUND)으로 구성하여 평면 영상을 획득하였다. 그 결과 섬광 픽셀 배열이 확장될수록 POLISH 면보다 GROUND 면에서 섬광 픽셀 영상이 더 분리가 잘되는 것을 확인할 수 있었다. 더욱이 GROUND 면에서는 16 × 16 배열에서도 모서리 영역의 섬광 픽셀 영상들의 정점이 분리되어 나타나 영상화된 것을 확인할 수 있었다.

Keywords

References

  1. D. P. Clark, C. T. Badea, "Advances in micro-CT imaging of small animals", Physica Medica: European Journal of Medical Physics, Vol. 88, pp. 175-192, 2021. https://doi.org/10.1016/j.ejmp.2021.07.005 
  2. B. L. Franc, P. D. Acton, C. Mari, B. H. Hasegawa, "Small-Animal SPECT and SPECT/CT: Important Tools for Preclinical Investigation", Journal of Nuclear Medicine, Vol. 49, No. 10, pp. 1651-1663, 2008. https://doi.org/10.2967/jnumed.108.055442 
  3. F. V. D. Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, C. Ji, S. G. Staelens, F. J. Beekman, "U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-Animal Imaging", Journal of Nuclear Medicine, Vol. 50, No. 4, pp. 599-605, 2009. https://doi.org/10.2967/jnumed.108.056606 
  4. B. W. Miller, R. V. Holen, H. H. Barrett, L. R. Furenlid, "A System Calibration and Fast Iterative Reconstruction Method for Next-Generation SPECT Imagers", IEEE Transactions on Nuclear Science, Vol. 59, No. 5, pp. 1990-1996, 2012. https://doi.org/10.1109/TNS.2012.2198243 
  5. F. Verhaegen, P. Granton, E. Tryggestad, "Small animal radiotherapy research platforms", Physics in Medicine & Biology, Vol. 56, pp. R55-R83, 2011. https://doi.org/10.1088/0031-9155/56/12/R01 
  6. S. R. Cherry, Y. Shao, R. W. Silverman, K. Meadors, S. Siegel, A. Chatziioannou, J. W. Young, W. Jones, J. C. Moyers, D. Newport, A. Boutefnouchet, T. H. Farquhar, M. Andreaco, M. J. Paulus, D. M. Binkley, R. Nutt, M. E. Phelps, "MicroPET: a high resolution PET scanner for imaging small animals", IEEE Transactions on Nuclear Science, Vol. 44, No. 3, pp. 1161-1166, 1997. https://doi.org/10.1109/23.596981 
  7. R. S. Miyaoka, S. G. Kohlmyer, T. K. Lewellen, "Performance Characteristics of Micro Crystal Element (MiCE) Detectors", IEEE Transactions on Nuclear Science, Vol. 48, No. 4, pp. 1403-1407, 2001. https://doi.org/10.1109/23.958366 
  8. Y. C. Tai, A. F. Chatziioannou, Y. Yang, R. W. Silverman, K. Meadors, S. Siegel, D. F. Newport, J. R. Stickel, S. R. Cherry, "MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging", Physics in Medicine and Biology, Vol. 48, No. 11, pp. 1519-1537, 2003. https://doi.org/10.1088/0031-9155/48/11/303 
  9. S. Yamamoto, H. Watabe, T. Watabe, H. Ikeda, Y. Kanai, Y. Ogata, K. Kato, J. Hatazawa, "Development of ultrahigh resolution Si-PM-based PET system using 0.32 mm pixel scintillators", Nuclear Instruments and Methods in Physics A, Vol. 836, pp. 7-12, 2016. https://doi.org/10.1016/j.nima.2016.08.045 
  10. Y. Yang, J. Bec, J. Zhou, M. Zhang, M. S. Judenhofer, X. Bai, K. Di, Y. Wu, M. Rodriguez, P. Dokhale, K. S. Shah, R. Farrell, J. Qi, S. R. Cherry, "A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging", Journal of Nuclear Medicine, Vol. 57, No. 7, pp. 1130-1135, 2016. https://doi.org/10.2967/jnumed.115.165886 
  11. F. Godinez, K. Gong, J. Zhou, M. S. Judenhofer, A. J. Chaudhari, R. D. Badawi, "Development of an Ultra High Resolution PET Scanner for Imaging Rodent Paws: PawPET", IEEE Transactions on Radiation and Plasma Medical Sciences, Vol. 2, No. 1, pp. 7-16, 2018. https://doi.org/0.1109/TRPMS.2017.2765486  109/TRPMS.2017.2765486
  12. S. J. Lee, "A Study on the Maxmization of Scintillation Pixel Array According to the Size of the Photosensor", Journal of the Korean Society of Radiology, Vol. 16, No. 2, pp. 157-162, 2022. https://doi.org/10.7742/jksr.2022.16.2.157 
  13. F. Cayouette, D. Laurendeau, C. Moisan, "DETECT2000: an improved Monte-Carlo simulator for the computer aided design of photon sensing devices", Proceedings of SPIE, Quebec, Vol. 4833, pp. 69-76, 2003. https://doi.org/10.1117/12.474315 
  14. F. Cayouette, C. Moisan, N. Zhang, C. J. Thompson, "Monte Carlo Modeling of Scintillator Crystal Performance for Stratified PET Detectors With DETECT2000", IEEE Transactions on Nuclear Science, Vol. 49, No. 3, pp. 624-628, 2002. https://doi.org/10.1109/TNS.2002.1039539 
  15. GAGG(Ce) Crystal, Efficient, Professional Intelligent, Customer-oriented, From URL; https://www.epic-crystal.com/oxide-scintillators/gagg-ce-scintillator.html 
  16. MPPC(Multi-Pixel Photon Counter) S14160/S14161 series, HAMAMATSU, 2020. From URL; https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s14160_s14161_series_kapd1064e.pdf