DOI QR코드

DOI QR Code

Application of artificial intelligence to improve the efficiency and stability of prosthetic hands via nanoparticle reinforcement

  • Jialing Li (School of Artificial intellegence, Chongqing Youth Vocational & Technical College) ;
  • Gongxing Yan (Luzhou vocational and technical college) ;
  • Zhongjian Tang (School of Artificial intellegence, Chongqing Youth Vocational & Technical College) ;
  • Saifeldin M. Siddeeg (Department of Chemistry, College of Science, King Khalid University) ;
  • Tamim Alkhalifah (Department of Computer Engineering, College of Computer, Qassim University)
  • 투고 : 2021.09.10
  • 심사 : 2024.10.14
  • 발행 : 2024.10.25

초록

NEMS (Nano-Electro-Mechanical Systems) devices play a significant role in the advancement of prosthetic hands due to their unique properties at the nanoscale. Their integration enhances the functionality, sensitivity, and performance of prosthetic limbs. Understanding the electro-thermal buckling behavior of such structures is crucial since they may be subjected to extreme heat. So, in this paper, the two-dimensional hyperbolic differential quadrature method (2D-HDQM) integrated with a four-variable refined quasi-3D tangential shear deformation theory (RQ-3DTSDT) in view of the trace of thickness stretching is extended to study electro-thermal buckling response of three-directional poroelastic FG (3D-PFG) circular sector nanoplate patched with piezoelectric layer. Aimed at discovering the real governing equations, coupled equations with the aid of compatibility conditions are employed. Regarding modeling the size-impacts, nonlocal refined logarithmic strain gradient theory (NRLSGT) with two variables called nonlocal and length scale factors is examined. Numerical experimentation and comparison are used to indicate the precision and proficiency related to the created procedure. After obtaining the outputs of the mathematics, an appropriate dataset is used for testing, training and validating of the artificial intelligence. In the results section will be discussed the trace associated with multiple geometrical and physical factors on the electro-thermal buckling performance of the current nanostructure. These findings are essential for the design and optimization of NEMS applications in various fields, including sensing, actuation, and electronics, where thermal stability is paramount. The study's insights contribute to the development of more reliable and efficient NEMS devices, ensuring their robust performance under varying thermal conditions.

키워드

과제정보

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/52/45.

참고문헌

  1. Alazwari, M.A., Zenkour, A.M. and Sobhy, M. (2022), "Hygrothermal buckling of smart graphene/piezoelectric nano-composite circular plates on an elastic substrate via DQM", Mathematics, 10(15), 10.3390/math10152638.
  2. Alshenawy, R., Safaei, B., Sahmani, S., Elmoghazy, Y., Al-Alwan, A. and Nuwairan, M.A. (2022), "Buckling mode transition in nonlinear strain gradient-based stability behavior of axial-thermal-electrical loaded FG piezoelectric cylindrical panels at microscale", Eng. Anal. Bound. Elem., 141, 36-64, https://doi.org/10.1016/j.enganabound.2022.04.010.
  3. Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2016), "Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation", Compos. Part B Eng., 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052.
  4. Cao, J., Du, J., Fan, Q., Yang, J., Bao, C. and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
  5. Chen, C., Yang, H., Song, K., Liang, D., Zhang, Y. and Ni, J. (2023), "Dissolution feature differences of carbonate rock within hydro-fluctuation belt located in the Three Gorges Reservoir Area", Eng. Geol., 327, 107362. https://doi.org/10.1016/j.enggeo.2023.107362.
  6. Chen, N., Yan, P. and Ouyang, J. (2019), "A generalized approach on bending and stress analysis of beams with piezoelectric material bonded", Sensor Actuat. A, 290, 54-61. https://doi.org/10.1016/j.sna.2019.02.029.
  7. Drai, A., Daikh, A.A., Belarbi, M.O., Houari, M.S.A., Aour, B., Hamdi, A. and Eltaher, M.A. (2023), "Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams", Adv. Nano Res., 14(3), 211-224. https://doi.org/10.12989/anr.2023.14.3.211.
  8. Du, G., Zhang, H., Yu, H., Hou, P., He, J., Cao, S., Wang, G. and Ma, L. (2024), "Study on automatic tracking system of microwave deicing device for railway contact wire", IEEE T. Instrum. Measur., 73, 3527611. https://doi.org/10.1109/TIM.2024.3446638.
  9. Eghbali, M. and Hosseini, S.A. (2024), "An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation", Adv. Nano Res., 16(6), 549-564. https://doi.org/10.12989/anr.2024.16.6.549.
  10. Esen, I., Alazwari, M.A., Almitani, K.H., Eltaher, M.A. and Abdelrahman, A. (2023), "Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load", Adv. Nano Res., 14(5), 475. https://doi.org/10.12989/anr.2023.14.5.475.
  11. Feng, Y., Mohammadi, M., Wang, L., Rashidi, M. and Mehrabi, P. (2021), "Application of artificial intelligence to evaluate the fresh properties of self-consolidating concrete", Materials, 14(17), 4885. https://doi.org/10.3390/ma14174885.
  12. Firouzianhaji, A., Usefi, N., Samali, B. and Mehrabi, P. (2021), "Shake table testing of standard cold-formed steel storage rack", Appl. Sci., 11(4), 1821. https://doi.org/10.3390/ma14174885.
  13. Ghazwani, M.H., Alnujaie, A., Van Vinh, P. and Tounsi, A. (2024), "A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations", Adv. Nano Res., 16(3), 313-324. https://doi.org/10.12989/anr.2024.16.3.313.
  14. Gholami, R. and Ansari, R. (2017), "A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezomagnetic rectangular nanoplates with various edge supports", Compos. Struct., 166, 202-218.
  15. Han, S., Zheng, D., Mehdizadeh, B., Nasr, E.A., Khandaker, M.U., Salman, M. and Mehrabi, P. (2023), "Sustainable design of self-consolidating green concrete with partial replacements for cement through neural-network and fuzzy technique", Sustainability, 15(6), 4752. https://doi.org/10.3390/su15064752.
  16. Han, S., Zhu, Z., Mortazavi, M., El-Sherbeeny, A.M. and Mehrabi, P. (2023), "Analytical assessment of the structural behavior of a specific composite floor system at elevated temperatures using a newly developed hybrid intelligence method", Buildings, 13(3), 799. https://doi.org/10.3390/buildings13030799.
  17. Hu, D., Sun, H., Mehrabi, P., Ali, Y.A. and Al-Razgan, M. (2023), "Application of artificial intelligence technique in optimization and prediction of the stability of the walls against wind loads in building design", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2023.2206208.
  18. Huang, H., Yuan, Y., Zhang, W. and Li, M. (2021), "Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint", Eng. Struct., 245, 112848.
  19. Huang, H., Li, M., Yuan, Y. and Bai, H. (2022a), "Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges", J. Build. Eng., 62, 105386. https://doi.org/10.1016/j.jobe.2022.105386
  20. Huang, H., Li, M., Zhang, W. and Yuan, Y. (2022b), "Seismic behavior of a friction-type artificial plastic hinge for the precast beam-column connection", Arch. Civil Mech. Eng., 22(4), 201. https://doi.org/10.1007/s43452-022-00526-1.
  21. Huang, H., Li, M., Yuan, Y. and Bai, H. (2023), "Experimental research on the seismic performance of precast concrete frame with replaceable artificial controllable plastic hinges", J. Struct. Eng., 149(1), 04022222. https://doi.org/10.1061/JSENDH.STENG-1164.
  22. Jalali, S., Naei, M. and Poorsolhjouy, A. (2010), "Thermal stability analysis of circular functionally graded sandwich plates of variable thickness using pseudo-spectral method", Mater. Des., 31(10), 4755-4763.
  23. Jin, F., Qian, Z., Wang, Z. and Kishimoto, K. (2005), "Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress", Smart Mater. Struct., 14(4), 515-523. https://doi.org/10.1088/0964-1726/14/4/009.
  24. Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E, 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002
  25. Khaje khabaz, M., Eftekhari, S.A., Hashemian, M. and Toghraie, D. (2020), "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories", Physica A, 546, 123998. https://doi.org/10.1016/j.physa.2019.123998.
  26. Kumar, P. and Harsha, S.P. (2020), "Modal analysis of functionally graded piezoelectric material plates", Mater. Today Proc., 28, 1481-1486. https://doi.org/10.1016/j.matpr.2020.04.825.
  27. Kumar, P. and Harsha, S.P. (2022), "Static, buckling and vibration response analysis of three-layered functionally graded piezo-electric plate under thermo-electric mechanical environment", J. Vib. Eng. Technol., 10(4), 1561-1598. https://doi.org/110.1007/s42417-022-00467-2.
  28. Li, J., Wang, Z., Zhang, S., Lin, Y., Jiang, L. and Tan, J. (2024), "Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process", Robot. Comput. Integr. Manuf., 85, 102647. https://doi.org/10.1016/j.rcim.2023.102647
  29. Liew, K., Teo, T. and Han, J.B. (1999), "Comparative accuracy of DQ and HDQ methods for three-dimensional vibration analysis of rectangular plates", Int. J. Numer. Meth. Eng., 45(12), 1831-1848. https://doi.org/10.1002/(SICI)1097-0207(19990830)45:12<1831::AID-NME656>3.0.CO;2-W
  30. Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.00
  31. Liu, B., Yang, H. and Karekal, S. (2020), "Effect of water content on argillization of mudstone during the tunnelling process", Rock Mech. Rock Eng., 53, 799-813. https://doi.org/10.1007/s00603-019-01947-w.
  32. Liu, J., Mohammadi, M., Zhan, Y., Zheng, P., Rashidi, M. and Mehrabi, P. (2021), "Utilizing artificial intelligence to predict the superplasticizer demand of self-consolidating concrete incorporating pumice, slag, and fly ash powders", Materials, 14(22), 6792. https://doi.org/10.3390/ma14226792.
  33. Liu, R., Li, H., Khadimallah, M.A. and Safarpour, M. (2022), "Three-dimensional poroelasticity solution of sandwich, cylindrical, open, functionally graded composite panels under multi-directional initial stress: semi-numerical modeling", Arch. Civil Mech. Eng., 22(1), 1-42. https://doi.org/10.1007/s43452-021-00337-w
  34. Mallek, H., Jrad, H., Algahtani, A., Wali, M. and Dammak, F. (2019), "Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers", Comput. Meth. Appl. Mech. Eng., 347, 679-699. https://doi.org/10.1016/j.cma.2019.01.001.
  35. Mallek, H., Jrad, H., Wali, M. and Dammak, F. (2019), "Piezo-elastic response of smart functionally graded structure with integrated piezoelectric layers using discrete double directors shell element", Compos. Struct., 210, 354-366. https://doi.org/10.1016/j.compstruct.2018.11.062.
  36. Mantari, J. and Soares, C.G. (2015), "A quasi-3D tangential shear deformation theory with four unknowns for functionally graded plates", Acta Mechanica, 226(3), 625-642. https://doi.org/10.1007/s00707-014-1192-3.
  37. Mehrabi, P., Honarbari, S., Rafiei, S., Jahandari, S. and Alizadeh Bidgoli, M. (2021), "Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques", J. Ambient Intell. Human. Comput., 12, 10105-10123. https://doi.org/10.3390/ma14174885.
  38. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.3390/ma14174885.
  39. Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers", Appl. Math. Modell., 96, 66-79. https://doi.org/10.1016/j.apm.2021.03.013.
  40. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B. and Qin, Z. (2020), "Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers", Eng. Struct., 222, 111141. https://doi.org/10.1016/j.engstruct.2020.111141.
  41. Pietrzakowski, M. (2008), "Piezoelectric control of composite plate vibration: Effect of electric potential distribution", Comput. Struct., 86(9), 948-954. https://doi.org/10.1016/j.compstruc.2007.04.023
  42. Qiu, Y. (2019). "Estimation of tail risk measures in finance: Approaches to extreme value mixture modeling", Johns Hopkins University.
  43. Qiu, Y. and Wang, J. (2024). "A Machine Learning Approach to Credit Card Customer Segmentation for Economic Stability", Proceedings of the 4th International Conference on Economic Management and Big Data Applications, ICEMBDA 2023, October, Tianjin, China.
  44. Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165
  45. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  46. SafarPour, H., Ghanbari, B. and Ghadiri, M. (2019), "Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell", Appl. Math. Modell., 65, 428-442. https://doi.org/10.1016/j.apm.2018.08.028
  47. Selim, B.A., Liu, Z. and Liew, K.M. (2019), "Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers", Thin Wall. Struct., 145, 106372. https://doi.org/10.1016/j.tws.2019.106372.
  48. Sepahi, O., Forouzan, M. and Malekzadeh, P. (2011), "Thermal buckling and postbuckling analysis of functionally graded annular plates with temperature-dependent material properties", Mater. Des., 32(7), 4030-4041. https://doi.org/10.1016/j.matdes.2011.03.063
  49. Sharma, V. and Kumar, S. (2022), "Bleustein-Gulyaev wave in a nonlocal piezoelectric layered structure", Mech. Adv. Mater. Struct., 29(15), 2197-2207. https://doi.org/10.1080/15376494.2020.1854907.
  50. Silva, T.M.P., Clementino, M.A., Erturk, A. and De Marqui, C. (2018), "Equivalent electrical circuit framework for nonlinear and high quality factor piezoelectric structures", Mechatronics. 54 133-143. https://doi.org/10.1016/j.mechatronics.2018.07.009.
  51. Sobhani, E. (2022a), "On the vibrational analysis of combined paraboloidal-conical air vehicle segment shell-type structures", Aerosp. Sci. Technol., 129, 107823. https://doi.org/10.1016/j.ast.2022.107823.
  52. Sobhani, E. (2022b), "Vibrational performance modeling for coupling of a full-ellipsoid shell with a cylindrical shell with a focus on flexibility at coupling and boundary conditions via the GDQ-meshless method", Eng. Anal. Bound. Elem., 144, 329-351. https://doi.org/10.1016/j.enganabound.2022.08.037.
  53. Sobhy, M., Abazid, M.A. and Al Mukahal, F.H.H. (2022), "Electro-thermal buckling of FG graphene platelets-strengthened piezoelectric beams under humid conditions", Adv. Mech. Eng., 14(4), 16878132221091005. https://doi.org/10.1177/16878132221091005.
  54. Song, K., Yang, H., Liang, D., Chen, L. and Jaboyedoff, M. (2024), "Step-like displacement prediction and failure mechanism analysis of slow-moving reservoir landslide", J. Hydrol., 628, 130588. https://doi.org/10.1016/j.jhydrol.2023.130588.
  55. Taheri, E., Firouzianhaji, A., Mehrabi, P., Vosough Hosseini, B. and Samali, B. (2020), "Experimental and numerical investigation of a method for strengthening cold-formed steel profiles in bending", Appl. Sci., 10(11), 3855. https://doi.org/10.3390/app10113855.
  56. Taheri, E., Firouzianhaji, A., Usefi, N., Mehrabi, P., Ronagh, H. and Samali, B. (2019), "Investigation of a method for strengthening perforated cold-formed steel profiles under compression loads", Appl. Sci., 9(23), 5085. https://doi.org/10.3390/ma14174885.
  57. Taheri, E., Mehrabi, P., Rafiei, S. and Samali, B. (2021), "Numerical evaluation of the upright columns with partial reinforcement along with the utilisation of neural networks with combining feature-selection method to predict the load and displacement", Appl. Sci., 11(22), 11056. https://doi.org/10.3390/app112211056.
  58. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.3390/ma14174885.
  59. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.0
  60. Wang, Z., Zhou, T., Zhang, S., Sun, C., Li, J. and Tan, J. (2023), "Bo-LSTM based cross-sectional profile sequence progressive prediction method for metal tube rotate draw bending", Adv. Eng. Inform., 58, 102152. https://doi.org/10.1016/j.aei.2023.102152.
  61. Wu, J., Yang, Y., Mehrabi, P. and Nasr, E.A. (2023), "Efficient machine-learning algorithm applied to predict the transient shock reaction of the elastic structure partially rested on the viscoelastic substrate", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2023.2183289.
  62. Wu, Y., Fan, Y. and Li, L. (2022), "Nonlinear modal electro-mechanical coupling factor for piezoelectric structures containing nonlinearities", Chinese J. Aeronaut., 36(2), 100-110. https://doi.org/10.1016/j.cja.2022.06.020.
  63. Xiao, C., Zhang, G., Yu, Y., Mo, Y. and Mohammadi, R. (2022), "Nonlinear vibration analysis of the nanobeams subjected to magneto-electro-thermal loading based on a novel HSDT", Waves Random Complex Med., 1-20. https://doi.org/10.1080/17455030.2021.2023231.
  64. Yaghoobi, H. and Torabi, M. (2013), "Post-buckling and nonlinear free vibration analysis of geometrically imperfect functionally graded beams resting on nonlinear elastic foundation", Appl. Math. Modell., 37(18-19), 8324-8340. https://doi.org/10.1016/j.apm.2013.03.037.
  65. Yang, H., Chen, C., Ni, J. and Karekal, S. (2023), "A hyperspectral evaluation approach for quantifying salt-induced weathering of sandstone", Sci. Total Environ., 885, 163886. https://doi.org/10.1016/j.scitotenv.2023.163886.
  66. Yang, H., Ni, J., Chen, C. and Chen, Y. (2023), "Weathering assessment approach for building sandstone using hyperspectral imaging technique", Heritage Sci., 11(1), 70. https://doi.org/10.1186/s40494-023-00914-7.
  67. Yang, H., Song, K. and Zhou, J. (2022), "Automated recognition model of geomechanical information based on operational data of tunneling boring machines", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-021-02723-5.
  68. Zhang, C., Hu, H., Ma, Q. and Wang, N. (2023), "Computational thermal stability and critical temperature buckling of nanosystem", Adv. Nano Res., 14(6), 575-590. https://doi.org/10.12989/anr.2023.14.6.575.
  69. Zhang, C., Liu, Y., Zhang, Y., Ketabdar, A. and Xiang, H. (2024), "Study of educational management on performance of scholar in nano/micro-level composite", Adv. Nano Res., 16(6), 615-622. https://doi.org/10.12989/anr.2024.16.6.615.
  70. Zhang, J., Li, Y. and Zhang, C. (2024), "Pounding induced overturning resistance of FPB-isolated structures considering soil-structure-interactions", Soil Dyn. Earthq. Eng., 177, 108416. https://doi.org/10.1016/j.soildyn.2023.108416
  71. Zhang, J. and Zhang, C. (2023), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988
  72. Zhou, Y.T. and Luo, Q.H. (2022), "Asymmetric non-slipping adhesion behavior of layered piezoelectric structures", Int. J. Mech. Sci., 224, 107330. https://doi.org/10.1016/j.ijmecsci.2022.107330.