DOI QR코드

DOI QR Code

Optimization of intelligent prosthetic hands using artificial neural networks and nanoscale technologies for enhanced performance

  • Jialing Li (School of Artificial intellegence, Chongqing Youth Vocational & Technical College) ;
  • Gongxing Yan (Luzhou vocational and technical college) ;
  • Zefang Wang (School of Artificial intellegence, Chongqing Youth Vocational & Technical College) ;
  • Belgacem Bouallegue (Department of Computer Engineering, College of Computer Science, King Khalid University) ;
  • Tamim Alkhalifah (Department of Computer Engineering, College of Computer, Qassim University)
  • Received : 2021.08.21
  • Accepted : 2024.10.08
  • Published : 2024.10.25

Abstract

Annular nano-electromechanical systems (NEMS) in intelligent prosthetic hands enhance precision by serving as highly sensitive sensors for detecting pressure, vibrations, and deformations. This improves feedback and control, enabling users to modulate grip strength and tactile interaction with objects more effectively, enhancing prosthetic functionality. This research focuses on the electro-thermal buckling behavior of multi-directional poroelastic annular NEMS used as temperature sensors in airplanes. In the present study, thermal buckling performance of nano-scale annular functionally graded plate structures integrated with piezoelectric layers under electrical and extreme thermal loadings is investigated. In this regard, piezoelectric layers are placed on a disk made of metal matrix composite with graded properties in three radials, thickness and circumferential directions. The grading properties obey the power-law distribution. The whole structure is embedded in thermal environment. To model the mechanical behavior of the structure, a novel four-variable refined quasi-3D sinusoidal shear deformation theory (RQ-3DSSDT) is engaged in obtaining displacement field in the whole structure. The validity of the results is examined by comparing to a similar problem published in literature. The results of the buckling behavior of the structure in different boundary conditions are presented based on the critical temperature rise and critical external voltage. It is demonstrated that increase in the nonlocal and gradient length scale factor have contradicting effects on the critical temperature rise. On the other hand, increase in the applied external voltage cause increase in the critical temperature. Effects of other parameters like geometrical parameters and grading indices are presented and discussed in details.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/291/45.

References

  1. Al-shujairi, M. and Mollamahmutoglu, C . (2018), "Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103.
  2. Burdess, J.S. and Fawcett, J.N. (1992), "Experimental Evaluation of a Piezoelectric Actuator for the Control of Vibration in a Cantilever Beam", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 206(2), 99-106. https://doi.org/10.1243/PIME_PROC_1992_206_315_02.
  3. Chen, C., Yang, H., Song, K., Liang, D., Zhang, Y. and Ni, J. (2023), "Dissolution feature differences of carbonate rock within hydro-fluctuation belt located in the Three Gorges Reservoir Area", Eng. Geol., 327, 107362. https://doi.org/10.1016/j.enggeo.2023.107362.
  4. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  5. Chung, M., Lee, H.J., Kang, Y.C., Lim, W.B., Kim, J.H., Cho, J.Y., Byun, W., Kim, S.J. and Park, S.H. (2012), "Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle", Int. J. Naval Arch. Ocean Eng., 4(3), 183-198. https://doi.org/10.2478/IJNAOE-2013-0089.
  6. Civalek, O . (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.03.
  7. Drai, A., Daikh, A.A., Belarbi, M.O., Houari, M.S.A., Aour, B., Hamdi, A. and Eltaher, M.A. (2023), "Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams", Adv. Nano Res., 14(3), 211-224. https://doi.org/10.12989/anr.2023.14.3.211.
  8. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9.
  9. Eghbali, M. and Hosseini, S.A. (2024), "An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation", Adv. Nano Res., 16(6), 549-564. https://doi.org/10.12989/anr.2024.16.6.549
  10. Esen, I., Alazwari, M.A., Almitani, K.H., Eltaher, M.A. and Abdelrahman, A. (2023), "Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load", Adv. Nano Res., 14(5), 475. https://doi.org/10.12989/anr.2023.14.5.475
  11. Feng, Y., Mohammadi, M., Wang, L., Rashidi, M. and Mehrabi, P. (2021), "Application of artificial intelligence to evaluate the fresh properties of self-consolidating concrete", Materials, 14(17), 4885. https://doi.org/10.3390/ma14174885.
  12. Firouzianhaji, A., Usefi, N., Samali, B. and Mehrabi, P. (2021), "Shake table testing of standard cold-formed steel storage rack", Appl. Sci., 11(4), 1821. https://doi.org/10.3390/ma14174885.
  13. Ghazwani, M.H., Alnujaie, A., Van Vinh, P. and Tounsi, A. (2024), "A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations", Adv. Nano Res., 16(3), 313-324.
  14. Gholami, R. and Ansari, R. (2017), "A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezomagnetic rectangular nanoplates with various edge supports", Compos. Struct., 166, 202-218. https://doi.org/10.1016/j.compstruct.2017.01.045
  15. Han, S., Zheng, D., Mehdizadeh, B., Nasr, E.A., Khandaker, M.U., Salman, M. and Mehrabi, P. (2023a), "Sustainable design of self-consolidating green concrete with partial replacements for cement through neural-network and fuzzy technique", Sustainability, 15(6), 4752. https://doi.org/10.3390/su15064752.
  16. Han, S., Zhu, Z., Mortazavi, M., El-Sherbeeny, A.M. and Mehrabi, P. (2023b), "Analytical assessment of the structural behavior of a specific composite floor system at elevated temperatures using a newly developed hybrid intelligence method", Buildings, 13(3), 799. https://doi.org/10.3390/buildings13030799.
  17. Hirao, Y., Wan, W., Kanoulas, D. and Harada, K. (2023), "Body extension by using two Mobile manipulators", Cyborg Bionic Syst., 4, 0014. https://doi.org/10.34133/cbsystems.0014
  18. Hou, Y., Wei, G. and Xiang, Y. (2005), "DSC-Ritz method for the free vibration analysis of Mindlin plates", Int. J. Numer. Meth. Eng., 62(2), 262-288. https://doi.org/10.1002/nme.1186
  19. Hu, D., Sun, H., Mehrabi, P., Ali, Y.A. and Al-Razgan, M. (2023), "Application of artificial intelligence technique in optimization and prediction of the stability of the walls against wind loads in building design", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2023.2206208.
  20. Kargarnovin, M.H., Najafizadeh, M.M. and Viliani, N.S. (2007), "Vibration control of a functionally graded material plate patched with piezoelectric actuators and sensors under a constant electric charge", Smart Mater. Struct., 16(4), 1252-1259. https://doi.org/10.1088/0964-1726/16/4/037.
  21. Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E, 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
  22. Lim, C., Li, Z. and Wei, G. (2005), "DSC-Ritz method for high-mode frequency analysis of thick shallow shells", Int. J. Numer. Meth. Eng., 62(2), 205-232. https://doi.org/10.1002/nme.1179.
  23. Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  24. Liu, B., Yang, H. and Karekal, S. (2020), "Effect of water content on argillization of mudstone during the tunnelling process", Rock Mech. Rock Eng., 53, 799-813. https://doi.org/10.1007/s00603-019-01947-w.
  25. Liu, J., Mohammadi, M., Zhan, Y., Zheng, P., Rashidi, M. and Mehrabi, P. (2021), "Utilizing artificial intelligence to predict the superplasticizer demand of self-consolidating concrete incorporating pumice, slag, and fly ash powders", Materials, 14(22), 6792. https://doi.org/10.3390/ma14226792.
  26. Liu, R., Li, H., Khadimallah, M.A. and Safarpour, M. (2022), "Three-dimensional poroelasticity solution of sandwich, cylindrical, open, functionally graded composite panels under multi-directional initial stress: semi-numerical modeling", Arch. Civil Mech. Eng., 22(1), 1-42. https://doi.org/10.1007/s43452-021-00337-w.
  27. Lv, Y., Wei, J., Huang, Z., Zhang, Z., Ding, S., Zhang, C., Wang, W., Xu, K., Xu, R. and Wang, L. (2024), "Superelastic bamboo fiber-based spongy aerogel for flexible piezoresistive sensors with wide response range and high sensitivity", Chem. Eng. J., 488, 151053. https://doi.org/10.1016/j.cej.2024.1510.
  28. Mehrabi, P., Honarbari, S., Rafiei, S., Jahandari, S. and Alizadeh Bidgoli, M. (2021), "Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques", J. Ambient Intell. Human. Comput., 12, 10105-10123. https://doi.org/10.3390/ma14174885.
  29. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., Shariati, A. and Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.3390/ma14174885.
  30. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L.K. (2020), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(1), 2050010. https://doi.org/10.1142/S1758825120500106.
  31. Pietrzakowski, M. (2008), "Piezoelectric control of composite plate vibration: Effect of electric potential distribution", Comput. Struct., 86(9), 948-954.
  32. Qiu, Y. (2019), "Estimation of tail risk measures in finance: Approaches to extreme value mixture modeling", Johns Hopkins University.
  33. Qiu, Y. and Wang, J. (2024), "A Machine Learning Approach to Credit Card Customer Segmentation for Economic Stability", Proceedings of the 4th International Conference on Economic Management and Big Data Applications, ICEMBDA 2023, October 27-29, Tianjin, China.
  34. Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  35. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  36. Safarpour, H., Esmailpoor Hajilak, Z. and Habibi, M. (2019), "A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation", Int. J. Mech. Mater. Des., 15(3), 569-583. https://doi.org/10.1007/s10999-018-9431-8.
  37. Safarpour, H., Ghanbari, B. and Ghadiri, M. (2019), "Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell", Appl. Math. Modell., 65, 428-442. https://doi.org/10.1016/j.apm.2018.08.028.
  38. Sepahi, O., Forouzan, M.R. and Malekzadeh, P. (2011), "Thermal buckling and postbuckling analysis of functionally graded annular plates with temperature-dependent material properties", Mater. Des., 32(7), 4030-4041. https://doi.org/10.1016/j.matdes.2011.03.063.
  39. Shahsiah, R. and Eslami, M. (2003), "Thermal buckling of functionally graded cylindrical shell", J. Therm. Stress., 26(3), 277-294. https://doi.org/10.1080/713855892.
  40. Shivashankar, P. and Gopalakrishnan, S. (2020), "Review on the use of piezoelectric materials for active vibration, noise, and flow control", Smart Mater. Struct., 29(5), 053001. https://doi.org/10.1088/1361-665x/ab7541.
  41. Song, K., Yang, H., Liang, D., Chen, L. and Jaboyedoff, M. (2024), "Step-like displacement prediction and failure mechanism analysis of slow-moving reservoir landslide", J. Hydrol., 628, 130588. https://doi.org/10.1016/j.jhydrol.2023.130588.
  42. Sun, J., Zhou, L., Geng, B., Zhang, Y. and Li, Y. (2024), "Leg state estimation for quadruped robot by using probabilistic model with proprioceptive feedback", IEEE/ASME T. Mechatron., Early Access. https://doi.org/10.1109/TMECH.2024.3421251.
  43. Taheri, E., Firouzianhaji, A., Mehrabi, P., Vosough Hosseini, B. and Samali, B. (2020), "Experimental and numerical investigation of a method for strengthening cold-formed steel profiles in bending", Appl. Sci., 10(11), 3855. https://doi.org/10.3390/app10113855.
  44. Taheri, E., Firouzianhaji, A., Usefi, N., Mehrabi, P., Ronagh, H. and Samali, B. (2019), "Investigation of a method for strengthening perforated cold-formed steel profiles under compression loads", Appl. Sci., 9(23), 5085. https://doi.org/10.3390/ma14174885.
  45. Taheri, E., Mehrabi, P., Rafiei, S. and Samali, B. (2021), "Numerical evaluation of the upright columns with partial reinforcement along with the utilisation of neural networks with combining feature-selection method to predict the load and displacement", Appl. Sci., 11(22), 11056. https://doi.org/10.3390/app112211056.
  46. Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
  47. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.3390/ma14174885.
  48. Wang, C.M., Xiang, Y., Kitipornchai, S. and Liew, K.M. (1994), "Buckling solutions for Mindlin plates of various shapes", Eng. Struct., 16(2), 119-127. https://doi.org/10.1016/0141-0296(94)90037-X.
  49. Wang, K., Boonpratatong, A., Chen, W., Ren, L., Wei, G., Qian, Z., Lu, X. and Zhao, D. (2023), "The fundamental property of human leg during walking: linearity and nonlinearity", IEEE T Neural Syst. Rehabil. Eng., 31, 4871-4881.
  50. Wang, Q. (2002), "On buckling of column structures with a pair of piezoelectric layers", Eng. Struct., 24(2), 199-205. https://doi.org/10.1016/S0141-0296(01)00088-8.
  51. Wang, X., Zhang, R., Miao, Y., Wang, S. and Zhang, Y. (2024), "PI2-based adaptive impedance control for gait adaption of lower limb exoskeleton", IEEE/ASME T. Mechatron., Early Access. https://doi.org/10.1109/TMECH.2024.3370954.
  52. Wei, G. (2001), "Vibration analysis by discrete singular convolution", J. Sound Vib., 244(3), 535-553. https://doi.org/10.1006/jsvi.2000.3507.
  53. Wei, G., Zhao, Y. and Xiang, Y. (2001), "The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution", Int. J. Mech. Sci., 43(8), 1731-1746. https://doi.org/10.1016/S0020-7403(01)0002.
  54. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025.
  55. Wu, J., Yang, Y., Mehrabi, P. and Nasr, E.A. (2023), "Efficient machine-learning algorithm applied to predict the transient shock reaction of the elastic structure partially rested on the viscoelastic substrate", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2023.2183289.
  56. Yang, H., Chen, C., Ni, J. and Karekal, S. (2023), "A hyperspectral evaluation approach for quantifying salt-induced weathering of sandstone", Sci. Total Environ., 885, 163886. https://doi.org/10.1016/j.scitotenv.2023.163886.
  57. Yang, H., Ni, J., Chen, C. and Chen, Y. (2023), "Weathering assessment approach for building sandstone using hyperspectral imaging technique", Heritage Sci., 11(1), 70. https://doi.org/10.1186/s40494-023-00914-7.
  58. Yang, H., Song, K. and Zhou, J. (2022), "Automated recognition model of geomechanical information based on operational data of tunneling boring machines", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-021-02723-5.
  59. Zhang, C., Hu, H., Ma, Q. and Wang, N. (2023), "Computational thermal stability and critical temperature buckling of nano-system", Adv. Nano Res., 14(6), 575-590. https://doi.org/10.12989/anr.2023.14.6.575.
  60. Zhang, C., Liu, Y., Zhang, Y., Ketabdar, A. and Xiang, H. (2024), "Study of educational management on performance of scholar in nano/micro-level composite", Adv. Nano Res., 16(6), 615-622. https://doi.org/10.12989/anr.2024.16.6.615
  61. Zhang, S., Wang, C., Zhang, H. and Lin, H. (2024), "Collective dynamics of adaptive memristor synapse-cascaded neural networks based on energy flow", Chaos, Solitons Fract., 186, 115191. https://doi.org/10.1016/j.chaos.2024.115191.
  62. Zhang, Y., Wang, Z., Tazeddinova, D., Ebrahimi, F., Habibi, M. and Safarpour, H. (2021), "Enhancing active vibration control performances in a smart rotary sandwich thick nanostructure conveying viscous fluid flow by a PD controller", Waves Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1948627.
  63. Zhao, Y. and Wei, G. (2002), "DSC analysis of rectangular plates with non-uniform boundary conditions", J. Sound Vib., 255(2), 203-228. https://doi.org/10.1006/jsvi.2001.4150.