DOI QR코드

DOI QR Code

A semi-analytical study for vibration analysis of damaged core laminated cylindrical shell with functionally graded CNTs reinforced face sheets resting on a two-parameter elastic foundation

  • Aseel J. Mohammed (Department of Electromechanical Engineering, University of Technology-Iraq) ;
  • Bassam A. Mohammed (Thermal Mechanic Techniques Engineering Department, Basra Engineering Technical College, Southern Technical University) ;
  • Hatam K. Kadhom (Department of Electromechanical Engineering, University of Technology-Iraq) ;
  • Anmar Ghanim Taki (Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University) ;
  • Vahid Tahouneh (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
  • Received : 2024.04.26
  • Accepted : 2024.09.13
  • Published : 2024.10.25

Abstract

The main objective of this paper is to study vibration of sandwich cylindrical shell with damaged core and FG face sheets resting on a two-parameter elastic foundation based on three-dimensional theory of elasticity. Three complicated equations of motion for the structure under consideration are semi-analytically solved by using generalized differential quadrature method. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features. A detailed parametric study is carried out in order to reveal the effects of different profiles of two-parameter elastic foundation modulus, different geometrical parameters such as the mid radius-to-thickness ratio, length-to-mean radius ratio and the thickness of face sheets on the vibrational characteristics of the damaged functionally graded sandwich cylindrical shell.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2024/R/1446)

References

  1. Abouelregal, A.E. and Marin, M. (2020a), "The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory", Symmetry, 12(8), 1276. https://doi.org/10.3390/sym12081276.
  2. Abouelregal, A.E. and Marin. M. (2020b), "The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating", Mathematics, 8(7). https://doi.org/10.3390/math8071128.
  3. Abrate, S. (1998), Impact on Composite Structures, Cambridge University Press, Cambridge, U.K.
  4. Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  5. Afrookhteh, S.S., Fathi, A., Naghdipour, M. and Alizadeh Sahraei, A. (2016), "An experimental investigation of the effects of weight fractions of reinforcement and timing of hardener addition on the strain sensitivity of carbon nanotube/polymer composites", U.P.B. Sci. Bull., Series B, 78(4), 121-130.
  6. Afrookhteh, S.S., Shakeri, M., Baniassadi, M. and Alizadeh Sahraei, A. (2018), "Microstructure reconstruction and characterization of the porous GDLs for PEMFC based on fibers orientation distribution", Fuel Cells, 18(2). https://doi.org/10.1002/fuce.201700239.
  7. Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mech, 224, 1415-1427. https://doi.org/10.1007/s00707-013-0817-2
  8. Amari, A., Mohammed, B.A., Salman, H.M. and Lagos, J.M. (2023), "Numerical assessment of the nanocomposite sector annular plates with the aim of promoting their mixed-form thermal shock response", Eng. Anal. Bound. Elem., 146, 483-499. https://doi.org/10.1016/j.enganabound.2022.10.031.
  9. Anderson, T.A. (2003), "3D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274. https://doi.org/10.1016/S0263-8223(03)00013-8.
  10. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  11. Bacciocchi, M., Tarantino, A.M. (2019), "Time-dependent behavior of viscoelastic three-phase composite plates reinforced by carbon nanotubes", Compos. Struct., 216, 20-31. https://doi.org/10.1016/j.compstruct.2019.02.083.
  12. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  13. Bellman, R. and Casti, J. (1971), "Differential quadrature and long term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7.
  14. Beni, Y.T., Mehralian, F. and Zeighampour, H. (2016), "The modified couple stress functionally graded cylindrical thin shell formulation", Mech. Adv. Mater. Struct., 23(7), 791-801. http://doi.org/10.1080/15376494.2015.1029167.
  15. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  16. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.
  17. Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/10.12989/anr.2021.11.3.239.
  18. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.
  19. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res. 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  20. Brischetto, S., Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2015), "Refined 2D and exact 3D shell models for the free vibration analysis of single- and double-walled carbon nanotubes", Technologies, 3(4), 259-284. https://doi.org/10.3390/technologies3040259.
  21. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
  22. Chen, W.Q., Bian, Z.G. and Ding, H.U. (2004), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005.
  23. Civalek, O . (2005), "Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of HDQ-FD methods", Int. J. Press Vessel Pip., 82(6), 470-479. https://doi.org/10.1016/j.ijpvp.2004.12.003.
  24. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano Res., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.
  25. Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391.
  26. Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", P. Roy. Soc. Lond. A Mat., 241, 376-396. https://www.jstor.org/stable/100095. 100095
  27. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2016), "Free vibration analysis of arbitrarily shaped functionally carbon nanotube-reinforced plates", Compos. Part B, 115(1), 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021.
  28. Gang, S.W., Lam, K.Y. and Reddy, J.N. (1999), "The elastic response of functionally graded cylindrical shells to low-velocity", Int. J. Impact Eng., 22(4), 397-417. https://doi.org/10.1016/S0734-743X(98)00058-X.
  29. Ghavamian, A., Rahmandoust, M. and O chsner, A. (2012), "A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003.
  30. Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
  31. Hill, R. (1964a), "Theory of mechanical properties of fibre-strengthened materials Elastic behavior, J. Mech. Phys. Solids, 12, 199-212. https://doi.org/10.1016/0022-5096(64)90019-5.
  32. Hill, R. (1964b), "Theory of mechanical properties of fibre-strengthened materials: II. Inelastic behavior", J. Mech. Phys. Solids, 12, 213-218. https://doi.org/10.1016/0022-5096(64)90020-1.
  33. Hong, M. and Lee, U. (2015), "Dynamics of a functionally graded material axial bar, Spectral element modeling and analysis", Compos. Part B, 69, 427-434. https://doi.org/10.1016/j.compositesb.2014.10.022.
  34. Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG Graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micro-mechanical model", Steel Compos. Struct., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255
  35. Jam, J.E., Noorabadi, M. and Namdaran, N. (2017), "Nonlinear free vibration analysis of micro-beams resting on viscoelastic foundation based on the modified couple stress theory", Arch. Mech. Eng., 64(2). https://doi.org/10.1515/meceng-2017-0015.
  36. Kamarian, S., Yas, M.H. and Pourasghar, A. (2013), "Free vibration analysis of three-parameter functionally graded material sandwich plates resting on Pasternak foundations", Sandw. Struct. Mater., 15(3) 292-308. https://doi.org/10.1177/1099636213487363.
  37. Kashtalyan, M. and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43. https://doi.org/10.1016/j.compstruct.2007.12.003.
  38. Khadir, A.I., Daikh, A.A. and Eltaher, M.A. (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621.
  39. Lemaitre, J., Chaboche, J.L. (1990), Mechanics of Solid Materials, Cambridge University Press, New York, N.Y., U.S.A.
  40. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
  41. Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct., 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106.
  42. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
  43. Marin, M. and O chsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermo-elasticity", Continuum Mech. Thermodyn., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7.
  44. Matsunaga, H. (2008), "Free vibration and stability of functionally graded shallow shells according to a 2-D higher-order deformation theory", Compos. Struct., 84(2), 132-146. https://doi.org/10.1016/j.compstruct.2007.07.006.
  45. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277.
  46. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  47. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modeling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63, 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0.
  48. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  49. Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31, 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
  50. Paliwal, D.N., Pandey, R.K. and Nath, T. (1996), "Free vibration of circular cylindrical shell on Winkler and Pasternak foundation", Int. J. Press. Vessel Pip., 69(1), 79-89. https://doi.org/10.1016/0308-0161(95)00010-0.
  51. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  52. Patel, B.P., Gupta, S.S., Loknath, M.S.B. and Kadu, C.P. (2005), "Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory", Compos. Struct., 69(3), 259-270. https://doi.org/10.1016/j.compstruct.2004.07.002.
  53. Pelletier Jacob, L. and Vel Senthil,S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43(5), 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079.
  54. Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N. (2000). "Vibration characteristic of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 119-129. https://doi.org/10.1016/S0003-682X(99)00063-8.
  55. Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded panels using higher-order finite-element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056.
  56. Shakeri, M., Akhlaghi, M. and Hosseini, S.M. (2006), Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder", J. Compos. Struct., 76(1), 174-181. https://doi.org/10.1016/j.compstruct.2006.06.022.
  57. Shi, D.L., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. T. ASME, 126, 250-257. https://doi.org/10.1115/1.1751182.
  58. Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer, Berlin.
  59. Sobhani Aragh, B. and Yas, M.H. (2010), "Static and free vibration analyses of continuously graded fiber-reinforced cylindrical shells using generalized power-law distribution", Acta Mech., 215, 155-173. https://doi.org/10.1007/s00707-010-0335-4.
  60. Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52(4), 663-686. https://doi.org/10.12989/sem.2014.52.4.663.
  61. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020a), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277. http://doi.org/10.12989/scs.2020.34.2.261.
  62. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020b), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. http://doi.org/10.12989/scs.2019.33.5.717.
  63. Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
  64. Tahouneh, V. and Naei, M.H. (2014), "A novel 2-D six-parameter power-law distribution for three-dimensional dynamic analysis of thick multi-directional functionally graded rectangular plates resting on a two-parameter elastic foundation", Meccanica, 49(1), 91-109. https://10.1007/s11012-013-9776-x.
  65. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase cnt/polymer/fiber laminated nanocomposite structures", Polym. Compos., 40, 102-126. https://doi.org/10.1002/pc.24520.
  66. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  67. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B, 67(1), 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.
  68. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016a), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89(1), 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
  69. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2016b), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B, 115(1), 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011.
  70. Tsai, S.W. (1964), Structural Behavior of Composite Materials, Philco Corporation: Newport Beach, CA, U.S.A.
  71. Tsai, S.W. (1965), Strength Characteristics of Composite Materials, Philco Corporation: Newport Beach, CA, U.S.A.
  72. Vinson J.R. (2005), "Sandwich structures: past, present, and future. In: Proceedings of the 7th international conference on sandwich structures", 3-12, Aalborg University, Aalborg, Denmark.
  73. Viola, E. and Tornabene, F. (2009), "Free vibrations of three-parameter functionally graded parabolic panels of revolution", Mech. Res. Commun., 36(5), 587-594. https://doi.org/10.1016/j.mechrescom.2009.02.001.
  74. Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680.
  75. Wang, L., Hu, H. (2014), "Thermal vibration single-walled carbon nanotubes with quantum effects", Proc. Math. Phys. Eng. Sci., 470(2168). https://doi.org/10.1098/rspa.2014.0087.
  76. Wang, Y.Q. and Liu, Y.F. (2019), "Free vibration and buckling of polymeric shells reinforced with 3D graphene foams", Results Phys., 14. https://doi.org/10.1016/j.rinp.2019.102510.
  77. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  78. Yang, J. and Shen, S.H. (2003), "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vib., 261(5), 871-893. https://doi.org/10.1016/S0022-460X(02)01015-5.
  79. Yang, R., Kameda, H. and Takada, S. (1998), "Shell model FEM analysis of buried pipelines under seismic loading", Bull Disaster Prev Res. Inst., 38, 115-146.
  80. Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates. Part 1-deflection and stresses", Int. J. Solid Struct., 42(1), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  81. Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates. Part 1-buckling and free vibration deflection and stresses", Int. J. Solid Struct., 42(18), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
  82. Zhang, Y. and Wang L. (2020), "Effects of Van der Waals force on the vibration of typical Multi-layered Two-dimensional nano-structures", Sci. Rep., 10(644). https://doi.org/10.1038/s41598-020-57522-9.
  83. Zhang, L., Bhatti, M.M., Michaelides, E.E., Marin, M. and Ellahi, R. (2022), "Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field", Eur. Phys. J. Spec. Top., 231, 521-533. https://doi.org/10.1140/epjs/s11734-021-00409-1