• Title/Summary/Keyword: laminated cylindrical shell

Search Result 77, Processing Time 0.02 seconds

Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle

  • Wu, Yaopeng;Lu, Erle;Zhang, Shuai
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.377-384
    • /
    • 2018
  • Bi-stable structure can be stable in both its extended and coiled forms. For the un-stressed thin cylindrical shell, the strain energy expressions are deduced by using a theoretical model in terms of only two parameters. Based on the principle of minimum potential energy, the bi-stable behaviors of the cylindrical shells are investigated. The results indicate that the isotropic cylindrical shell does not have the second stable configuration and laminated cylindrical shells with symmetric or antisymmetric layup of fibers have the second stable state under some confined conditions. In the case of antisymmetric laminated cylindrical shell, the analytical expressions of the stability are derived based on the extremal principle, and the shell can achieve a compact coiled configuration without twist deformation in its second stable state. In the case of symmetric laminated cylindrical shell, the explicit solutions for the stability conditions cannot be deduced. Numerical results show that stable configuration of symmetric shell is difficult to achieve and symmetric shell has twist deformation in its second stable form. In addition, the roll-up radii of the antisymmetric laminated cylindrical shells are calculated using the finite element package ABAQUS. The results show that the value of the roll-up radii is larger from FE simulation than from theoretical analysis. By and large, the predicted roll-up radii of the cylindrical shells using ABAQUS agree well with the theoretical results.

Hygrothermal effects on buckling of composite shell-experimental and FEM results

  • Biswal, Madhusmita;Sahu, Shishir Kr.;Asha, A.V.;Nanda, Namita
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1445-1463
    • /
    • 2016
  • The effects of moisture and temperature on buckling of laminated composite cylindrical shell panels are investigated both numerically and experimentally. A quadratic isoparametric eight-noded shell element is used in the present analysis. First order shear deformation theory is used in the present finite element formulation for buckling analysis of shell panels subjected to hygrothermal loading. A program is developed using MATLAB for parametric study on the buckling of shell panels under hygrothermal field. Benchmark results on the critical loads of hygrothermally treated woven fiber glass/epoxy laminated composite cylindrical shell panels are obtained experimentally by using universal testing machine INSTRON 8862. The effects of curvature, lamination sequences, number of layers and aspect ratios on buckling of laminated composite cylindrical curved panels subjected to hygrothermal loading are considered. The results are presented showing the reduction in buckling load of laminated composite shells with the increase in temperature and moisture concentrations.

Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment

  • Dong, K.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.395-410
    • /
    • 2006
  • This paper reports the result of an investigation into wave propagation in orthotropic laminated piezoelectric cylindrical shells in hydrothermal environment. A dynamic model of laminated piezoelectric cylindrical shell is derived based on Cooper-Naghdi shell theory considering the effects of transverse shear and rotary inertia. The wave characteristics curves are obtained by solving an eigenvalue problem. The effects of layer numbers, thickness of piezoelectric layers, thermal loads and humid loads on the wave characteristics curves are discussed through numerical results. The solving method presented in the paper is validated by the solution of a classical elastic shell non-containing the effects of transverse shear and rotary inertia. The new features of the wave propagation in laminated piezoelectric cylindrical shells with various laminated material, layer numbers and thickness in hydrothermal environment and some meaningful and interesting results in this paper are helpful for the application and the design of the ultrasonic inspection techniques and structural health monitoring.

Buckling Analysis of laminated composite Cylindrical shells under Axial Compression (축압축하중을 받는 복합적층원통셸의 좌굴해석)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.36-41
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

Buckling Behavior of Laminated Composite Cylindrical Shells (복합적층원통셀의 좌굴거동)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.49-58
    • /
    • 1997
  • The objective of this study is to investigate effects of prebuckling on the bucking of laminated compostie cylindrical shells, Both axial compression and lateral pressure are considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. The study was using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

Buckling of Laminated Composite Cylindrical Shells under Axial Compression (축압추하중을 받는 복합재료원통셸의 좌굴)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.112-116
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

Free Vibration of the Composite Laminated Cylindrical Shells Stiffened with the Axial Stiffeners (길이방향으로 보강된 복합재료 원통쉘의 자유진동)

  • Lee, Young-Shin;Kim, Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2223-2233
    • /
    • 1996
  • The analytical solutions for the free vibration of cross-ply laminated composite cyllindrical shell with axial stiffeners(stringers) are presented usint the energy method. The stiffeners are taken to be smeared over the surface of shell with the smeared stffener theory. The effect of the parameters such as the stacking sequences, the shell thichness, the shell radius-to stringer depth ratio, the stringer depth-to width ratio, the shell length-to radius ratio are studied. By comparison with the previously published experimental results and the analytical results for the stiffened isotropic cylindrical shell and the unstiffened orthotropic composite laminated cylindrical shell, it is shown that natural frequencies can be determined with adequate accuracy.

Analysis of Simple Supported Anisotropic Symmetric Laminated Cylindrical Shells (단순지지된 비등방성 대칭 적층 원통형 쉘의 해석)

  • Chai, Sang Youn;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.117-129
    • /
    • 1999
  • The objective of this study is to identify the advantages of composite materials and to investigate the behavior of the anisotropic symmetric laminated cylindrical shell structures. To analyze the anisotropic symmetric laminated cylindrical shell structures, the finite difference technique. that consists of forward, central and backward difference, is introduced. In this study, the degree of freedom consists of three displacements and, especially, two moments except twisting moment. It has the advantage of improving the accuracy for calculating the moments. All four edges are assumed to be simply supported. From the numerical results, it is proved that the finite difference technique can be used efficiently to analyze the anisotropic symmetric laminated cylindrical shells and gives a guide in deciding how to make use of the fiber angle the anisotropic symmetric laminated cylindrical shells.

  • PDF

Curing Induced Residual Stresses in Laminated Cylindrical Shells

  • Lee, Soo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • A viscoelastic finite element analysis is presented to investigate residual stresses occurred in a laminated cylindrical shell during cure. An incremental viscoelastic constitutive equation that can describe stress relaxation during the cure is derived as a recursive formula which can be used conveniently for a numerical analysis. The finite element analysis program is developed on the basis of a 3-D degenerated shell element and the first order shear deformation theory, and is verified by comparing with an one dimensional exact solution. Viscoelastic effect on the residual stresses in the laminated shell during the cure is investigated by performing both the viscoelastic and linear elastic analyses considering thermal deformation and chemical shrinkage simultaneously. The results show that there is big difference between viscoelastic stresses and linear elastic stresses. The effect of cooling rates and cooling paths on the residual stresses is also examined.

  • PDF

Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers

  • Wang, Haojie;Yan, Wei;Li, Chunyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.599-611
    • /
    • 2020
  • A state-space method is developed to investigate the time-dependent behaviors of an angle-ply cylindrical shell in cylindrical bending with surface-bonded piezoelectric layers. Both the interfacial diffusion and sliding are considered to describe the properties of the imperfect interfaces. Particularly, a matrix reduction technique is adopted to establish the transfer relations between the elastic and piezoelectric layers of the laminated shell. Very different from our previous paper, in which an approximate numerical technique, i.e. power series expansion method, is used to deal with the time-dependent problems, the exact solutions are derived in the present analysis based on the piezoelasticity equations without any assumptions. Numerical results are finally obtained and the effects of imperfect interfaces on the electro-mechanical responses of the laminated shell are discussed.