DOI QR코드

DOI QR Code

Effects of Hallasan Mountain in Jeju Island on Typhoon's Track and Intensity

태풍의 진로와 강도에 있어 제주도 한라산의 영향

  • Se-Won Do (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Il-Ju Moon (Typhoon Research Center, Jeju National University)
  • 도세원 (기상청 수치모델링센터) ;
  • 문일주 (제주대학교 태풍연구센터)
  • Received : 2024.01.10
  • Accepted : 2024.02.05
  • Published : 2024.03.30

Abstract

This study examines the influence of Hallasan Mountain (Hallasan) on the track and intensity of two Typhoons, Soulik in 2018 and Chaba in 2016, which passed to the left and right of Hallasan, respectively, using a coupled ocean-atmosphere model. We designed three experiments: one with Hallasan's actual altitude, another with the mountain removed, and a third where Hallasan's altitude was doubled. Results showed that Hallasan had a negligible impact on the tracks of both typhoons. Regarding intensity, however, the central pressure of both typhoons increased (indicating weakening) by up to 2 hPa due to Hallasan; the maximum wind speeds initially increased (Soulik by 1 m/s, Chaba by 3 m/s) and then decreased (Soulik by 1 m/s, Chaba by 5 m/s). These results show that Hallasan does not significantly weaken the intensity of typhoons approaching the Korean Peninsula, but considering the average intensity change (-3.45 hPa) of past typhoons that passed to the left of Jeju Island in terms of central pressure, Hallasan makes a noteworthy contribution. Additionally, this study reveals that changes in typhoon winds due to the wind convergence caused by Hallasan's topography can alter ocean vertical mixing and sea surface cooling, further impacting typhoon intensity. This finding underscores the importance of using a coupled ocean-atmosphere model when studying the impact of topography on typhoons.

Keywords

Acknowledgement

이 논문은 2022학년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.

References

  1. Encyclopedia of Korean Culture (1991) Hallasan Mountain. https://encykorea.aks.ac.kr Accessed 1 Dec 2023 
  2. Chang CP, Yeh TC, Chen JM (1993) Effects of terrain on the surface structure of typhoons over Taiwan. Mon Wea Rev 121:734-752 
  3. Chen SS, Price JF, Zhao W, Donelan MA, Walsh EJ (2007) The CBLAST-Hurricane program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull Am Meteorol Soc 88:311-317 
  4. Chih C-H, Chou K-H, Chiao S (2015) Topography and tropical cyclone structure influence on eyewall evolution in Typhoon Sinlaku (2008). Terr Atmospheric Ocean Sci 26: 571-586. doi:10.3319/TAO.2015.05.08.01(A) 
  5. Chou K-H, Wu C-C, Wang Y (2011) Eyewall evolution of typhoons crossing the Philippines and Taiwan: an observational study. Terr Atmospheric Ocean Sci 22:535-548. doi:10.3319/TAO.2011.05.10.01(TM) 
  6. DeMaria M, Kaplan J (1994) Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J Climate 7:1324-1334 
  7. Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665-669 
  8. Ge X, Li T, Zhang S, Peng M (2010) What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)?. Atmospheric Sci Lett 11:46-50 
  9. Jang W, Chun HY (2013) The effects of topography on the evolution of typhoon Saomai (2006) under the influence of tropical storm Bopha (2006). Mon Wea Rev 141:468-489 
  10. Jeon C, Watts DR, Min HS, Kim DG, Kang SK, Moon I-J, Park J-H (2022) Weakening of the Kuroshio upstream by cyclonic cold eddies enhanced by the consecutive passages of Typhoons Danas, Wipha, and Francisco (2013). Front Mar Sci 9:884768. doi:10.3389/fmars.2022.884768 
  11. Kim S, Moon JH, Kim T (2021) A coupled numerical modeling study of a sea fog case after the passage of Typhoon Muifa over the Yellow Sea in 2011. J Geophys Res-Atmospheres 126:e2020JD033875 
  12. Kuo YC, Zheng ZW, Zheng Q, Gopalakrishnan G, Lee HY (2018) Typhoon-Kuroshio interaction in an air-sea coupled system: case study of typhoon Nanmadol (2011). Ocean Model 132:130-138 
  13. Kurihara Y, Bender MA, Ross RJ (1993) An initialization scheme of hurricane models by vortex specification. Mon Wea Rev 121:2030-2045 
  14. Menter FR (1992) Influence of freestream values on k-omega turbulence model predictions. AIAA Journal 30(6):1657-1659. doi:10.2514/3.11115 
  15. Moon I-J, Kwon SJ (2012) Impact of upper-ocean thermal structure on the intensity of Korean peninsula landfall typhoons. Prog Oceanogr 105:61-66 
  16. Moore AM, Arango HG, Broquet G, Edwards C, Veneziani M, Powell B, Robinson P (2011) The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: part III-Observation impact and observation sensitivity in the California current system. Prog Oceanogr 91:74-94 
  17. Park JH, Yeo D-E, Lee KJ, Lee H, Lee S-W, Noh S, Nam SH (2019) Rapid decay of slowly moving Typhoon Soulik (2018) due to interactions with the strongly stratified northern East China Sea. Geophys Res Lett 46(24):14595-14603 doi:10.1029/2019GL086274 
  18. Rogers R, Aberson S, Black M, Black P, Cione J, Dodge P, Uhlhorn E (2006) The intensity forecasting experiment: a NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull Am Meteorol Soc 87: 1523-1538 
  19. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465-3485 
  20. Tang CK, Chan JCL (2014) Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. QJR Meteorol Soc 140:1578-1589 
  21. Wang CC, Chen YH, Kuo HC, Huang SY (2013) Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: a numerical study of Typhoon Fanapi (2010). J Geophys Res-Atmospheres 118:3292-3308 
  22. Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model 35:230-244 
  23. Wu C-C (2001) Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon Wea Rev 129:1533-1549 
  24. Wu C-C, Chou KH, Cheng HJ, Wang Y (2003) Eyewall contraction, breakdown and reformation in a landfalling typhoon. Geophys Res Lett 30:1887 
  25. Wu C-C, Li T-H, Huang Y-H (2015) Influence of mesoscale topography on tropical cyclone tracks: further examination of the channeling effect. J Atmos Sci 72:3032-3050. doi: 10.1175/JAS-D-14-0168.1 
  26. Wu C-C, Yen TH, Kuo YH, Wang W (2002) Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. part I: the topographic effect. Weather Forecast 17:1001-1015 
  27. Wu R, Zhang H, Chen D, Li C, Lin J (2018) Impact of Typhoon Kalmaegi (2014) on the South China Sea: simulations using a fully coupled atmosphere-ocean-wave model. Ocean Model 131:132-151 
  28. Yalblonsky RM, Ginis I (2012) Impact of a warm ocean eddy's circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon Wea Rev 141: 997-1021 
  29. Yang S, Moon I‑J, H‑J Bae, Kim B‑M, Byun D‑S, Lee H‑Y (2022) Intense atmospheric frontogenesis by air-sea coupling processes during the passage of Typhoon Lingling captured at Ieodo Ocean Research Station. Sci Rep 12: 15513. doi:10.1038/s41598-022-19359-2 
  30. Yeh TC, Elsberry RL (1993) Interaction of typhoons with the Taiwan orography. part I: upstream track deflections. Mon Wea Rev 121:3193-3212 
  31. Zambon JB, He R, Warner JC (2014) Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model. Ocean Dyn 64:1535-1554