DOI QR코드

DOI QR Code

Construction of a Rotating Disk Electrode System for Measuring Electrochemical Parameters of a Metal Ion in LiCl-KCl Melt: Electrochemical Properties of Sm3+

  • Received : 2024.04.17
  • Accepted : 2024.05.22
  • Published : 2024.09.30

Abstract

Pyrochemical processing and molten-salt reactors have recently garnered significant attention as they are promising options for future nuclear technologies, such as those for recycling spent nuclear fuels and the next generation of nuclear reactors. Both of these technologies require the use of high-temperature molten salt. To implement these technologies, one must understand the electrochemical behavior of fission products in molten salts, lanthanides, and actinides. In this study, a rotating-disk-electrode (RDE) measurement system for high-temperature molten salts is constructed and tested by investigating the electrochemical reactions of Sm3+ in LiCl-KCl melts. The results show that the reduction of Sm3+ presents the Levich behavior in LiCl-KCl melts. Using the RDE system, not only is the diffusion-layer thickness of Sm3+ measured in high-temperature molten salts but also various electrochemical parameters for Sm3+ in LiCl-KCl melts, including the diffusion coefficient, Tafel slope, and exchange current density, are determined.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2017M2A8A5014716, 2021M2E1A1085202, and RS-2023-00261146) and by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade Industry and Energy (MOTIE) (RS-2023-0233621).

References

  1. E.Y. Choi, S.S. Hong, W. Park, H.S. Im, S.C. Oh, C.Y. Won, J.S. Cha, and J.M. Hur, "Electrochemical Reduction Process for Pyroprocessing", Korean Chem. Eng. Res., 52(3), 279-288 (2014).
  2. M.A. Rose, M.A. Williamson, and J. Willit, "Determining the Exchange Current Density and Tafel Constant for Uranium in LiCl/KCl Eutectic", ECS Electrochem. Lett., 4(1), C5-C7 (2015).
  3. J. Zhang, "Electrochemistry of Actinides and Fission Products in Molten Salts-Data Review", J. Nucl. Mater., 447(1-3), 271-284 (2014).
  4. B.K. Kim and B.G. Park, "Electrochemical Behaviors of Bi3+ Ions on Inert Tungsten or on Liquid Bi Pool in the Molten LiCl-KCl Eutectic", J. Nucl. Fuel Cycle Waste Technol., 20(1), 33-41 (2022).
  5. C.Y. Jung, T.H. Kim, and S.E. Bae, "Real-time Monitoring of Uranium Concentration in NaCl-MgCl2-UCl3 Molten Salt", J. Radioanal. Nucl. Chem., 332(12), 5233-5238 (2023).
  6. C.M. Ye, S.L. Jiang, Y.L. Liu, K. Xu, S.H. Yang, K.K. Chang, H. Ren, Z.F. Chai, and W.Q. Shi, "Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic", J. Nucl. Fuel Cycle Waste Technol., 19(2), 161-176 (2021).
  7. S. Ghosh, S. Vandarkuzhali, N. Gogoi, P. Venkatesh, G. Seenivasan, B. Reddy, and K. Nagarajan, "Anodic Dissolution of U, Zr and U-Zr Alloy and Convolution Voltammetry of Zr4+|Zr2+ Couple in Molten LiCl-KCl Eutectic", Electrochim. Acta, 56(24), 8204-8218 (2011).
  8. K.H. Lim, S. Park, and J.I. Yun, "Study on Exchange Current Density and Transfer Coefficient of Uranium in LiCl-KCl Molten Salt", J. Electrochem. Soc., 162(14), E334-E337 (2015).
  9. K.C. Marsden, and B. Pesic, "Evaluation of the Electrochemical Behavior of CeCl3 in Molten LiCl-KCl Eutectic Utilizing Metallic Ce as an Anode", J. Electrochem. Soc., 158(6), F111-F120 (2011).
  10. S.E. Bae, T.S. Jung, Y.H. Cho, J.Y. Kim, K. Kwak, and T.H. Park, "Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt", Inorg. Chem., 57(14), 8299-8306 (2018).
  11. S.E. Bae, D.H. Kim, N.R. Lee, T.H. Park, and J.Y. Kim, "Investigation of the Electrochemical Behavior of Ytterbium Cations in LiCl-KCl Melt Using Spectro-Electrochemical Methods", J. Electrochem. Soc., 163(2), H115-H118 (2015).
  12. S.E. Bae, K.L. Stewart, and A.A. Gewirth, "Nitrate Adsorption and Reduction on Cu(100) in Acidic Solution", J. Am. Chem. Soc., 129(33), 10171-10180 (2007).
  13. G. Cordoba and C. Caravaca, "An Electrochemical Study of Samarium Ions in the Molten Eutectic LiCl+KCl", J. Electroanal. Chem., 572(1), 145-151 (2004).
  14. D.K. Corrigan, E.O. Blair, J.G. Terry, A.J. Walton, and A.R. Mount, "Enhanced Electroanalysis in Lithium Potassium Eutectic (LKE) Using Microfabricated Square Microelectrodes", Anal. Chem., 86(22), 11342-11348 (2014).
  15. W. Yang, N. Lee, C. Jung, T.H. Park, S. Choi, and S.E. Bae, "Microelectrode Voltammetric Analysis of Samarium Ions in LiCl-KCl Eutectic Molten Salt", Electrochem. Commun., 149, 107470 (2023).
  16. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applcations, 2nd ed., John Wiley & Sons, New York (2001).
  17. J.Y. Kim, S.E. Bae, D.H. Kim, Y.S. Choi, J.W. Yeon, and K. Song, "High-Temperature Viscosity Measurement of LiCl-KCl Molten Salts Comprising Actinides and Lanthanides", Bull. Korean Chem. Soc., 33(11), 3871-3874 (2012).
  18. D. Galizzioli and S. Trasatti, "Work Function, Electronegativity, and Electrochemical Behaviour of Metals: IV. Simple Electron Exchange Reactions. Fe2+/Fe3+ Redox Couple", J. Electroanal. Chem. Interf. Electrochem., 44(3), 367-388 (1973).