DOI QR코드

DOI QR Code

Comparison of Experimental Results and Electron Structure Calculations on Organic Light Emitting Materials Consisting of an Anthracene Chromophore and Diphenyl Amines Derivatives

Anthracene chromophore와 diphenyl amine 유도체로 구성된 유기발광재료에 관한 광학실험과 전자구조계산의 비교

  • Kiho Lee (Integrated Engineering, Department of Chemical Engineering, Kyung Hee University) ;
  • Hayoon Lee (Integrated Engineering, Department of Chemical Engineering, Kyung Hee University) ;
  • Jongwook Park (Integrated Engineering, Department of Chemical Engineering, Kyung Hee University)
  • 이기호 (경희대학교 화학공학과 융합공학전공) ;
  • 이하윤 (경희대학교 화학공학과 융합공학전공) ;
  • 박종욱 (경희대학교 화학공학과 융합공학전공)
  • Received : 2024.08.12
  • Accepted : 2024.08.19
  • Published : 2024.10.10

Abstract

The electronic structure calculations for organic light-emitting diode-emitting materials were performed using three different methods: r2 SCAN-3c, B3LYP-D3/def2-TZVP, and DLPNO-STEOM-CCSD/def2-SVP. These calculations were used to predict structure optimization, molecular orbitals, and excitation properties. Additionally, the differences among the calculation methods were investigated and compared with experimental values to identify the most suitable computational method. The five selected emitting materials include N,N,N',N'-tetraphenyl-anthracene-9,10-diamine, in which diphenyl amines are substituted on an anthracene chromophore, along with other alkyl groups of varying sizes and positions. The qualitative predictions made by the calculations were mostly consistent with the experimental results, and among them, the B3LYP/def2-TZVP method showed the smallest error in absorption wavelength compared to the experimental results, confirming it as the most suitable calculation method.

유기발광 다이오드 발광재료를 r2 SCAN-3c, B3LYP/def2-TZVP, DLPNO-STEOM-CCSD/def2-SVP와 같은 세 가지 전자구조계산 방법들을 이용한 전자구조 계산을 통해 구조최적화, 분자궤도 함수, excitation을 예측하였다. 또한, 계산 방법에 따른 차이를 알아보고 실험값과 비교를 통해 적합한 계산 방법을 찾아내는 연구를 진행하였다. 선정된 5개의 발광재료들은 anthracene chromophore에 diphenyl amine이 치환된 N,N,N',N'-tetraphenyl-anthracene-9,10-diamine (TAD)를 포함하여 위치와 크기를 달리한 alkyl group들이 치환되어 있다. 계산에 의한 정성적 예상은 실험결과와 대부분 일치하였으며, 이 중 B3LYP/def2-TZVP 방법의 결과가 실험결과와 absorption wavelength 면에서 가장 오차가 적었으며, 적합한 계산 방법으로 확인되었다.

Keywords

Acknowledgement

This research received (partly) support from the GRRC program of Gyeonggi Province [(GRRCKYUNGHEE2023-B01), Development of ultra-fine process materials based on the sub-nanometer class for the next-generation semiconductors]. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03048004).

References

  1. S. Grimme, A. Hansen, S. Ehlert, and J. M. Mewes, r2 SCAN-3c: A "Swiss army knife" composite electronic-structure method, J. Chem. Phys., 154, 064103 (2021).
  2. M. Bursch, J. M. Mewes, A. Hansen, and S. Grimme, Best-practice DFT protocols for basic molecular computational chemistry, Angew. Chem. Int. Ed., 61, e202205735 (2022).
  3. Y. H. Yu, C. H. Huang, J. M. Yeh, and P. T. Huang, Effect of methyl substituents on the N-diaryl rings of anthracene-9,10-diamine derivatives for OLEDs applications, Org. Electron., 12, 694-702 (2011).
  4. H. Jung, J. Ryu, S. Kang, H. Lee, and J. Park, Synthesis and electroluminescence property of green fluorescent dopant including anthracene and diphenylamine moiety, J. Nanosci. Nanotechnol., 19, 4799-4802 (2019).
  5. S. Kim, S. Kang, and J. Park, Synthesis and electro-optical property of green fluorescent emitter based on anthracene core and optimized side groups, J. Nanosci. Nanotechnol., 21, 4654-4659 (2021).
  6. F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, The ORCA quantum chemistry program package, J. Chem. Phys., 152, 224108 (2020).
  7. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 7, 3297-3305 (2005).
  8. R. Berraud-Pache, F. Neese, G. Bistoni, and R. Izsak, Unveiling the photophysical properties of boron-dipyrromethene dyes using a new accurate excited state coupled cluster method, J. Chem. Theory Comput., 16, 564-575 (2020).
  9. P. F. Loos, A. Scemama, and D. Jacquemin, The quest for highly accurate excitation energies: A computational perspective, J. Phys. Chem. Lett., 11, 2374-2383 (2020).