DOI QR코드

DOI QR Code

Utilization of Lipid-Extracted Algae Cell Residue in Cultivation of Chlorella vulgaris for Biodiesel Production

  • Nhat Minh Dang (VNU Key Laboratory of Advanced Materials for Green Growth, VNU University of Science, Vietnam National University) ;
  • Kisay Lee (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2024.07.30
  • Accepted : 2024.08.17
  • Published : 2024.10.10

Abstract

Lipid-extracted algae (LEA) cell residue is generated as an organic solid waste in the process of biodiesel production from microalgae, and its recycling or reuse is important in the aspect of waste minimization. In this study, the influence of the addition of LEA hydrolysate to Chlorella vulgaris (C. vulgaris) cultivation on cell growth and biodiesel production was investigated to seek a possible use of LEA as a carbon source. LEA was hydrolyzed by three different methods: acid hydrolysis, autoclave, and ultra-sonication. The resulting hydrolysates were supplemented with three background media: formulated defined medium (BG-11), organic liquid fertilizer (PAL1), and distilled water. Both cell growth and lipid production of C. vulgaris were improved under mixotrophic cultivation. By supplementing hydrolysates, biomass productivity was increased several folds because the LEA hydrolysates contained monosaccharides such as glucose and galactose. Lipid contents and biodiesel productivity were bestly increased in PAL1 medium supplemented with ultrasonication (UL) hydrolysate, from 11 to 25% after 14 days, while nitrate concentration was quickly reduced from 55 to below 10 mg/L. The suggested recycling option of the LEA to microalgae cultivation was helpful to improve biodiesel productivity as well as to reduce organic waste generation.

Keywords

Acknowledgement

This work was supported by 2023 Research Fund of Myongji University.

References

  1. S. Brahma, B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir, and S. Basumatary, Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production, Chem. Eng. J. Adv., 10, 100284 (2022).
  2. N. Hossain, M. H. Hasan, T. M. I. Mahlia, A. H. Shamsuddin, and A.S. Silitonga, Feasibility of microalgae as feedstock for alternative fuel in Malaysia: A review, Energy Strategy Rev., 32, 100536 (2020).
  3. J. C. Nzayisenga, K. Eriksson, and A. Sellstedt, Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as a growth medium, Bioresour. Technol., 257, 260-265 (2018).
  4. A. Abreu, R. Morais, J. Teixeira, and J. Nunes, Joao, A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes, Renew. Sustain. Energy Rev., 159, 112247 (2022).
  5. S. Zhang, L. Zhang, G. Xu, F. Li, and X. Li, A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies, Front. Microbiol., 13, 970028 (2022).
  6. S. Pandey, I. Narayanan, R. Selvaraj, T. Varadavenkatesan, and R. Vinayagam, Biodiesel production from microalgae: A comprehensive review on influential factors, transesterification processes, and challenges, Fuel, 367, 131547 (2024).
  7. N. M. Dang and K. Lee, Recycling of lipid-extracted algae cell residue for microorganisms cultivation and bioenergy production, Appl. Chem. Eng., 32, 487-496 (2021).
  8. M. Tsarpali, N. Arora, J. N. Kuhn, and G. P. Philippidis, Lipid-extracted algae as a source of biomaterials for algae biorefineries, Algal Res., 57, 102354 (2021).
  9. N. V. Tuyen, L. A. Limjuco, K. Lee, and N. M. Dang, Integrated applications of microalgae to wastewater treatment and biorefinery: Recent advances and opportunities, Appl. Chem. Eng., 33, 242-257 (2022).
  10. K. S. Khoo, I. Ahmad, K. W. Chew, K. Iwamoto, A. Bhatnagar, and P. L. Show, Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review, Prog. Energy Combust. Sci., 96, 101071 (2023).
  11. R. A. Anderson, Algal Culturing Techniques, 1st ed., 435-436, Elsevier Academic Press, New York, NY, USA (2004).
  12. H. Gerken, B. Donohoe, and E. Knoshaug, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, 237, 239-253 (2013).
  13. N. M. Dang and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioproc. Eng., 23(4), 405-414 (2018).
  14. E. G. Bligh and W. J. E. G. Dyer, A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917 (1959).
  15. M. V. Cheshire and C. M. Mundie, The hydrolytic extraction of carbohydrates from soil by sulfuric acid, J. Soil Sci., 17, 372-381 (1966).
  16. G. Delfau-Bonnet, N. Imatoukene, T. Clement, M. Lopez, F. Allais, and A.-L. Hantson, Evaluation of the potential of lipid-extracted Chlorella vulgaris residue for Yarrowia lipolytica growth at different pH levels, Mar. Drugs, 20, 264 (2022).
  17. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 19th ed., Washington DC, USA (1995).
  18. N. M. Dang and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018).
  19. L. B. Martins, J. Soares, W. B. da Silveira, R. D. C. S. Sousa, and M. A. Martins, Dilute sulfuric acid hydrolysis of Chlorella vulgaris biomass improves the multistage liquid-liquid extraction of lipids, Biomass Conv. Bioref. 11, 2485-2497 (2021)
  20. A. Martina, H. H. van de Bovenkamp, I. W. Noordergraaf, J. G. M. Winkelman, F. Picchioni, and H. J. Heeres, Kinetic study on the sulfuric acid-catalyzed conversion of D-galactose to levulinic acid in water, Ind. Eng. Chem. Res., 61, 9178-9191 (2022).
  21. S. Chai, J. Shi, T. Huang, Y. Guo, J. Wei, and M. Guo, Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture, PLoS ONE, 13, e0199873 (2018).
  22. S. Wu, X. Cheng, Q. Xu, and S. Wang, Feasibility study on heterotrophic utilization of galactose by Chlorella sorokiniana and promotion of galactose utilization through mixed carbon sources culture, Biotechnol. Biofuels, 17, 100 (2024).
  23. G. Kim, J. Bae, and K. Lee, Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp., Bioresour. Technol., 205, 274-279 (2016).
  24. G. Kim, G. Mujtaba, and K. Lee, Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production, Algae, 31, 257-266 (2016).
  25. A. Kumar and S. Bera, Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation, Bioresour. Technol. Rep., 12, 100584 (2020).
  26. M. A. Yaakob, R. M. S. R. Mohamed, A. Al-Gheethi, R. A. Gokare, and R. R. Ambati, Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview, Cells, 10, 393 (2021).
  27. T, Liu, Z. Chen, Y. Xiao, M. Yuan, C. Zhou, G. Liu, J. Fang, and B. Yang, Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga Chlorella vulgaris, Microorganisms, 10, 566 (2022).
  28. H. Chen, Y. Zheng, J. Zhan, C. He, and Q. Wang, Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism, Biotechnol. Biofuels, 10, 153 (2017).
  29. P. Chambonniere, A. Ramirez-Romero, A. Dimitriades-Lemaire, J. F. Sassi, and F. Delrue, Photosynthetic carbon uptake correlates with cell protein content during lipid accumulation in the micro-alga Chlorella vulgaris NIES 227, Fermentation, 8, 614 (2022).
  30. B. Sajjadi, E. Y. Chen, A. A. A. Raman, and S. Ibrahim, Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition, Renew. Sustain. Energy Rev., 97, 200-232 (2018).
  31. Y. A. M. Yusof, J. M. H. Basari, N. A. Mukti, R. Sabuddin, A. Z. Muda, S. Sulaiman, S. Makpol, and W. Z. W. Ngah, Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture, Afr. J. Biotechnol., 10, 13536-13542 (2011).
  32. N. Kumar, Oxidative stability of biodiesel: Causes, effects and prevention, Fuel, 190, 328-350 (2016).
  33. N. A. Amran, U. Bello, and M. S. H. Ruslan, The role of antioxidants in improving biodiesel's oxidative stability, poor cold flow properties, and the effects of the duo on engine performance: A review, Heliyon, 8, e09846 (2022).