Acknowledgement
This work was supported by 2023 Research Fund of Myongji University.
References
- S. Brahma, B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir, and S. Basumatary, Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production, Chem. Eng. J. Adv., 10, 100284 (2022).
- N. Hossain, M. H. Hasan, T. M. I. Mahlia, A. H. Shamsuddin, and A.S. Silitonga, Feasibility of microalgae as feedstock for alternative fuel in Malaysia: A review, Energy Strategy Rev., 32, 100536 (2020).
- J. C. Nzayisenga, K. Eriksson, and A. Sellstedt, Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as a growth medium, Bioresour. Technol., 257, 260-265 (2018).
- A. Abreu, R. Morais, J. Teixeira, and J. Nunes, Joao, A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes, Renew. Sustain. Energy Rev., 159, 112247 (2022).
- S. Zhang, L. Zhang, G. Xu, F. Li, and X. Li, A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies, Front. Microbiol., 13, 970028 (2022).
- S. Pandey, I. Narayanan, R. Selvaraj, T. Varadavenkatesan, and R. Vinayagam, Biodiesel production from microalgae: A comprehensive review on influential factors, transesterification processes, and challenges, Fuel, 367, 131547 (2024).
- N. M. Dang and K. Lee, Recycling of lipid-extracted algae cell residue for microorganisms cultivation and bioenergy production, Appl. Chem. Eng., 32, 487-496 (2021).
- M. Tsarpali, N. Arora, J. N. Kuhn, and G. P. Philippidis, Lipid-extracted algae as a source of biomaterials for algae biorefineries, Algal Res., 57, 102354 (2021).
- N. V. Tuyen, L. A. Limjuco, K. Lee, and N. M. Dang, Integrated applications of microalgae to wastewater treatment and biorefinery: Recent advances and opportunities, Appl. Chem. Eng., 33, 242-257 (2022).
- K. S. Khoo, I. Ahmad, K. W. Chew, K. Iwamoto, A. Bhatnagar, and P. L. Show, Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review, Prog. Energy Combust. Sci., 96, 101071 (2023).
- R. A. Anderson, Algal Culturing Techniques, 1st ed., 435-436, Elsevier Academic Press, New York, NY, USA (2004).
- H. Gerken, B. Donohoe, and E. Knoshaug, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, 237, 239-253 (2013).
- N. M. Dang and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioproc. Eng., 23(4), 405-414 (2018).
- E. G. Bligh and W. J. E. G. Dyer, A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917 (1959).
- M. V. Cheshire and C. M. Mundie, The hydrolytic extraction of carbohydrates from soil by sulfuric acid, J. Soil Sci., 17, 372-381 (1966).
- G. Delfau-Bonnet, N. Imatoukene, T. Clement, M. Lopez, F. Allais, and A.-L. Hantson, Evaluation of the potential of lipid-extracted Chlorella vulgaris residue for Yarrowia lipolytica growth at different pH levels, Mar. Drugs, 20, 264 (2022).
- APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 19th ed., Washington DC, USA (1995).
- N. M. Dang and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018).
- L. B. Martins, J. Soares, W. B. da Silveira, R. D. C. S. Sousa, and M. A. Martins, Dilute sulfuric acid hydrolysis of Chlorella vulgaris biomass improves the multistage liquid-liquid extraction of lipids, Biomass Conv. Bioref. 11, 2485-2497 (2021)
- A. Martina, H. H. van de Bovenkamp, I. W. Noordergraaf, J. G. M. Winkelman, F. Picchioni, and H. J. Heeres, Kinetic study on the sulfuric acid-catalyzed conversion of D-galactose to levulinic acid in water, Ind. Eng. Chem. Res., 61, 9178-9191 (2022).
- S. Chai, J. Shi, T. Huang, Y. Guo, J. Wei, and M. Guo, Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture, PLoS ONE, 13, e0199873 (2018).
- S. Wu, X. Cheng, Q. Xu, and S. Wang, Feasibility study on heterotrophic utilization of galactose by Chlorella sorokiniana and promotion of galactose utilization through mixed carbon sources culture, Biotechnol. Biofuels, 17, 100 (2024).
- G. Kim, J. Bae, and K. Lee, Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp., Bioresour. Technol., 205, 274-279 (2016).
- G. Kim, G. Mujtaba, and K. Lee, Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production, Algae, 31, 257-266 (2016).
- A. Kumar and S. Bera, Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation, Bioresour. Technol. Rep., 12, 100584 (2020).
- M. A. Yaakob, R. M. S. R. Mohamed, A. Al-Gheethi, R. A. Gokare, and R. R. Ambati, Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview, Cells, 10, 393 (2021).
- T, Liu, Z. Chen, Y. Xiao, M. Yuan, C. Zhou, G. Liu, J. Fang, and B. Yang, Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga Chlorella vulgaris, Microorganisms, 10, 566 (2022).
- H. Chen, Y. Zheng, J. Zhan, C. He, and Q. Wang, Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism, Biotechnol. Biofuels, 10, 153 (2017).
- P. Chambonniere, A. Ramirez-Romero, A. Dimitriades-Lemaire, J. F. Sassi, and F. Delrue, Photosynthetic carbon uptake correlates with cell protein content during lipid accumulation in the micro-alga Chlorella vulgaris NIES 227, Fermentation, 8, 614 (2022).
- B. Sajjadi, E. Y. Chen, A. A. A. Raman, and S. Ibrahim, Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition, Renew. Sustain. Energy Rev., 97, 200-232 (2018).
- Y. A. M. Yusof, J. M. H. Basari, N. A. Mukti, R. Sabuddin, A. Z. Muda, S. Sulaiman, S. Makpol, and W. Z. W. Ngah, Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture, Afr. J. Biotechnol., 10, 13536-13542 (2011).
- N. Kumar, Oxidative stability of biodiesel: Causes, effects and prevention, Fuel, 190, 328-350 (2016).
- N. A. Amran, U. Bello, and M. S. H. Ruslan, The role of antioxidants in improving biodiesel's oxidative stability, poor cold flow properties, and the effects of the duo on engine performance: A review, Heliyon, 8, e09846 (2022).