References
- S. P. Sullivan, D. G. Koutsonanos, M. del Pilar Martin, J .W. Lee, V. Zarnitsyn, S.-O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz, Dissolving polymer microneedle patches for influenza vaccination, Nat. Med., 16, 915-920 (2010).
- M.-H. Ling and M.-C. Chen, Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats, Acta Biomater., 9, 8952-8961 (2013).
- B. Chua, S. P. Desai, M. J. Tierney, J. A. Tamada, and A. N. Jina, Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo, Sens. Actuators A: Phys., 203, 373-381 (2013).
- Z. Xiang, J. Liu, and C. Lee, A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses, Microsyst. Nanoeng., 2, 1-8 (2016).
- A. V. Romanyuk, V. N. Zvezdin, P. Samant, M. I. Grenader, M. Zemlyanova, and M. R. Prausnitz, Collection of analytes from microneedle patches, Anal. Chem., 86, 10520-10523 (2014).
- M. Kim, T. Kim, D. S. Kim, and W. K. Chung, Curved microneedle array-based sEMG electrode for robust long-term measurements and high selectivity, Sensors, 15, 16265-16280 (2015).
- G. S. Guvanasen, L. Guo, R. J. Aguilar, A. L. Cheek, C. S. Shafor, S. Rajaraman, T. R. Nichols, and S. P. DeWeerth, A stretchable microneedle electrode array for stimulating and measuring intramuscular electromyographic activity, IEEE Trans. Neural Syst. Rehabil. Eng., 25, 1440-1452 (2016).
- G. Stavrinidis, K. Michelakis, V. Kontomitrou, G. Giannakakis, M. Sevrisarianos, G. Sevrisarianos, N. Chaniotakis, Y. Alifragis, and G. Konstantinidis, SU-8 microneedles based dry electrodes for Electroencephalogram, Microelectron. Eng., 159, 114-120 (2016).
- M. Tezuka, K. Ishimaru, and N. Miki, Electrotactile display composed of two-dimensionally and densely distributed microneedle electrodes, Sens. Actuators A: Phys., 258, 32-38 (2017).
- S. Pradeep Narayanan and S. Raghavan, Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility, Int. J. Adv. Manuf. Tech., 104, 3327-3333 (2019).
- F. S. Iliescu, J. C. M. Teo, D. Vrtacnik, H. Taylor, and C. Iliescu, Cell therapy using an array of ultrathin hollow microneedles, Microsyst. Technol., 24, 2905-2912 (2018).
- M. A. Boks, W. W. Unger, S. Engels, M. Ambrosini, Y. van Kooyk, and R. Luttge, Controlled release of a model vaccine by nanoporous ceramic microneedle arrays, Int. J. Pharm., 491, 375-383 (2015).
- S. Lee, S. Fakhraei Lahiji, J. Jang, M. Jang, and H. Jung, Micropillar integrated dissolving microneedles for enhanced transdermal drug delivery, Pharmaceutics, 11, 402 (2019).
- O. Khandan, M. Y. Kahook, and M. P. Rao, Fenestrated microneedles for ocular drug delivery, Sens. Actuators B: Chem., 223, 15-23 (2016).
- S. Li, S. Dong, W. Xu, S. Tu, L. Yan, C. Zhao, J. Ding, and X. Chen, Antibacterial hydrogels, Adv. Sci., 5, 1700527 (2018).
- N. Wilke, A. Mulcahy, S.-R. Ye, and A. Morrissey, Process optimization and characterization of silicon microneedles fabricated by wet etch technology, Microelectron. J., 36, 650-656 (2005).
- H. Takahashi, Y. J. Heo, N. Arakawa, T. Kan, K. Matsumoto, R. Kawano, and I. Shimoyama, Scalable fabrication of microneedle arrays via spatially controlled UV exposure, Microsyst. Nanoeng., 2, 1-9 (2016).
- N. Roxhed, P. Griss, and G. Stemme, A method for tapered deep reactive ion etching using a modified Bosch process, J. Micromech. Microeng., 17, 1087 (2007).
- T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, Metal microneedle fabrication using twisted light with spin, Opt. Express, 18, 17967-17973 (2010).
- B. Bediz, E. Korkmaz, R. Khilwani, C. Donahue, G. Erdos, L. D. Falo, and O. B. Ozdoganlar, Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application, Pharm. Res., 31, 117-135 (2014).
- H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, J. Micromech. Microeng., 5, 115 (1995).
- P. P. T. Nguyen, S. An, and H.-H. Jeong, Microfluidic formation of biodegradable PCLDA microparticles as sustainable sorbents for treatment of organic contaminants in wastewater, Colloids Surf. A: Physicochem. Eng. Asp., 656, 130409 (2023).
- E. Larraneta, J. Moore, E. M. Vicente-Perez, P. Gonzalez-Vazquez, R. Lutton, A. D. Woolfson, and R. F. Donnelly, A proposed model membrane and test method for microneedle insertion studies, Int. J. Pharm., 472, 65-73 (2014).
- K. Cheung, T. Han, and D. B. Das,, Effect of force of microneedle insertion on the permeability of insulin in skin, J. Diabetes Sci. Technol., 8, 444-452 (2014).