DOI QR코드

DOI QR Code

Formation of Reverse Cylindrical Micelles Using Mixtures of Lecithin and Salts

레시틴과 염들의 혼합물을 이용한 역실린더형 마이셀 형성

  • Min-Seok Kang (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Na-Hyeon Kim (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Chang-Min Lee (Department of Chemical Engineering, The Kumoh National Institute of Technology) ;
  • Hee-Young Lee (Department of Chemical Engineering, The Kumoh National Institute of Technology)
  • 강민석 (금오공과대학교 화학공학과) ;
  • 김나현 (금오공과대학교 화학공학과) ;
  • 이창민 (금오공과대학교 화학공학과) ;
  • 이희영 (금오공과대학교 화학공학과)
  • Received : 2024.08.06
  • Accepted : 2024.08.21
  • Published : 2024.10.10

Abstract

Lecithin is one type of surfactant with amphiphilic properties, which forms spherical reverse micelles in various organic solvents. Salts with markedly low solubility in organic solvents can significantly increase their solubility through ionic interactions through the hydrophilic head of lecithin, leading to changes in the molecular morphology of lecithin. As a result, spherical reverse micelles can transform into cylindrical reverse micelles, which can cause abrupt rheological changes when these cylindrical reverse micelles form a transient network. This study precisely analyzes the formation of self-assembled structures and rheological changes by simultaneously adding two types of salts to a lecithin solution, using small-angle X-ray scattering analysis and rheometry.

양친매성 특성을 지닌 계면활성제의 한 종류인 레시틴은 다양한 유기용매 상에서 구형의 역마이셀을 형성한다. 유기 용매 상에서 용해도가 현저히 낮은 염들은 레시틴 친수성 머리부분과의 이온 결합을 통해 그 용해도가 급격히 높아지게 되고, 또한 레시틴의 분자 형태의 변형을 유도한다. 이를 통해 구형의 역마이셀은 실린더형 역마이셀로 변환이 되며 이렇게 형성된 실린더형 역마이셀이 네트워크를 형성할 때 급격한 유변학적 변화를 일으키게 된다. 본 연구에서는 레시틴 용액에 두 가지 염을 동시에 첨가하여 자가조립 구조체의 형성 및 유변학적 변화를 소각 엑스선 산란 분석기 및 유동계를 이용하여 정밀하게 분석한다.

Keywords

Acknowledgement

본 과제(결과물)는 경상북도와 구미시의 재원으로 지원을 받아 수행된 지역산업기반 인재양성 및 혁신기술개발사업의 연구결과입니다.

References

  1. J. N. Israelachvili, Intermolecular Surface Forces, 3rd ed., 512-513, Academic Press, San Diego, CA, USA (1991). 
  2. E. Ruckenstein and R. Nagarajan, Critical micelle concentration. Transition point for micellar size distribution, J. Phys. Chem., 79, 2622-2626 (1975). 
  3. Y. Okahata and T. Kunitake, Self-assembling behavior of single-chain amphiphiles with the biphenyl moiety in dilute aqueous solution, Ber. Bunsenges. Phys. Chem., 84, 550-556 (1980). 
  4. S. Krimm, The hydrophobic effect: Formation of micelles and biological membranes, J. Polym. Sci., 18, 687 (1981). 
  5. M. V. Poteshnova and N. M. Zadymova, Normal micelles and oil-in-water microemulsions in a water-toluene-Tween 80 ternary system, Colloid J., 68, 201-210 (2006). 
  6. P. Schurtenberger, R. Scartazzini, L. J. Magid, M. E. Leser, and P. L. Luisi, Structural and dynamic properties of polymer-like reverse micelles, J. Phys. Chem., 94, 3695-3701 (1990). 
  7. E. V. Shumilina, Y. L. Khromova, and Y. A. Shchipunov, A study of the structure of lecithin organic gels by IR spectroscopy with Fourier-transform, Russ. J. Phys. Chem., 74, 1210-1219 (2000). 
  8. C. W. Njauw, C. Y. Cheng, V. A. Ivanov, A. R. Khokhlov, and S. H. Tung, Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization, Langmuir, 29, 3879-3888 (2013). 
  9. K. Hashizaki, T. Chiba, H. Taguchi, and Y. Saito, Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system, Colloid Polym. Sci., 287, 927-932 (2009). 
  10. M. G. Kim, E. J. Oh, K. S. Jin, J. W. Chang, and H. Y. Lee, Effect of sugar alcohols on the reverse self-assembly of lecithin in diverse organic solvents, J. Mol. Liq., 330, 115670 (2021). 
  11. C. Y. Lin and S. H. Tung, On the length of lecithin reverse wormlike micelles induced by inorganic salts: Binding site matters, J. Mol. Liq., 329, 115543 (2021). 
  12. H. Y. Lee, K. K. Diehn, S. W. Ko, S. H. Tung, and S. R. Raghavan, Can simple salts influence self-assembly in oil? Multivalent cations as efficient gelators of lecithin organosols, Langmuir, 26, 13831-13838 (2010). 
  13. D. M. Willard, R. E. Riter, and N. E. Levinger, Dynamic of polar solvation in lecithin/water/cyclohexane reverse micelles, J. Am. Chem. Soc., 120, 4151-4160 (1998). 
  14. Y. A. Shchipunov, Lecithin organogel: A micellar system with unique properties, Colloids Surf. A Physicochem. Eng. Asp., 183-185, 541-554 (2001). 
  15. R. Scartazzini and P. L. Luisi, Organogels from lecithins, J. Phys. Chem., 92, 829-833 (1988). 
  16. S. H. Tung, Y. E. Huang, and S. R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids, J. Am. Chem. Soc., 128, 5751-5756 (2006). 
  17. F. Aliotta, M. E. Fontanella, R. E. Lechner, M. Pieruccini, B. Ruffle, and C. Vasi, Single-particle dynamics of water molecules confined in a lecithin-based gel, Phys. Rev. E, 60, 7131-7136 (1999). 
  18. T. H. Ibrahim and R. Neuman, Nanostructure of open water-channel reversed micelles. I. 1H NMR spectroscopy and molecular modeling, Langmuir, 20, 3114-3122 (2004). 
  19. H. Y. Lee, K. K. Diehn, K. Sun, T. Chen, and S. R. Raghavan, Reversible photorheological fluids based on spiropyran-doped reverse micelles, J. Am. Chem. Soc., 133, 8461-8463 (2011). 
  20. C. R. Lee, Y. K. Lee, E. J. Oh, K. S. Jin, and H. Y. Lee, Effect of aliphatic solvents on the reverse self-assembly of lecithin and calcium chloride mixtures, J. Mol. Liq., 316, 113790 (2020). 
  21. K. Hashizaki, Y. Sakanishi, S. Yako, H. Tsusaka, M. Imai, H. Taguchi, and Y. Saito, New lecithin organogels from lecithin/polyglycerol/oil systems, J Oleo Sci., 61, 267-275 (2012).