DOI QR코드

DOI QR Code

Recent Synthetic Trends of Ti3C2Tx MXene

Ti3C2Tx MXene 합성 최신 연구 동향

  • Suin Shim (Department of Chemical Engineering, Gyeongsang National University) ;
  • Kwang Se Lee (Department of Materials Science and Engineering, Andong National University) ;
  • Chang-Ho Choi (Department of Chemical Engineering, Gyeongsang National University)
  • 심수인 (경상국립대학교 화학공학과) ;
  • 이광세 (국립안동대학교 반도체.신소재공학과) ;
  • 최창호 (경상국립대학교 화학공학과)
  • Received : 2024.07.26
  • Accepted : 2024.08.21
  • Published : 2024.10.10

Abstract

MXene, a two-dimensional transition metal carbide, nitride, or carbonitride, possesses exceptionally thin and large surface areas while also exhibiting remarkable electrical and chemical properties. These properties have attracted considerable interest in the application of MXene, including energy storage devices, sensors, and catalysts. Since the discovery of MXene in 2011, a number of synthetic methods have been proposed. The synthesis of MXene can be mainly divided into two stages: an etching step and a delamination step. The type of terminations or surface defects are dependent on the synthetic method and have a significant impact on key properties such as electrical conductivity. Therefore, research on synthetic methods is essential for the industrialization of MXene. This review provides an overview of the various etching methods and delamination strategies employed in the synthesis of Ti3C2Tx MXene, including the commonly used hydrofluoric acid etching method and the fluorine-free method, which has recently emerged as an environmentally friendly alternative. We also address the latest research trends, challenges, and perspectives for the industrialization of MXene.trialization of MXene.

MXene은 전이 금속과 탄소 또는 질소의 결합으로 이루어진 2차원 물질로, 매우 얇고 넓은 표면적과 풍부한 표면 화학적 특성을 가지며 높은 전기전도성을 발휘한다. 이러한 특성 덕분에 MXene은 에너지 저장 장치, 센서, 촉매 및 기타 다양한 응용 분야에서 많은 관심을 받고 있다. MXene의 합성 방법은 대체로 식각 단계와 박리 단계로 나뉘며, 2011년 MXene이 처음 발견된 이후 기존의 방식을 개선하는 방향으로 다양한 합성 방법이 제시되었다. 특히 표면 종결기의 종류 혹은 표면의 결함 특성이 합성법에 따라 변화하여 전기전도성과 같은 주요 특성에 큰 영향을 미치기 때문에, MXene을 대량 생산하고 산업에 활용하기 위해서는 합성법 연구가 필수적이다. 본 총설에서는 MXene 그룹 중 가장 광범위하게 연구된 Ti3C2Tx MXene의 보편적으로 이용하는 불산 식각 방법부터 환경 친화적인 방법으로 최근 많은 관심을 받고 있는 불소를 포함하지 않는 방법까지의 식각 방법과 다양한 박리 방법에 대한 전반적인 내용을 소개하고 최신 연구 동향을 다루며, 향후 MXene의 대량 생산과 산업적 활용을 위한 방향성을 제시하고자 한다.

Keywords

Acknowledgement

This research was funded by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2022R1F1A1068280). This results was supported by "Regional Innovation Strategy (RIS)" through the Natinal Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (재단 과제관리번호: 2021RIS-003). This paper was researched with the support of the Andong National University.

References

  1. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248-4253 (2011). 
  2. M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance, Nature, 516, 78-81 (2014). 
  3. A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, and L. Song, Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2, Mater. Des., 114, 161-166 (2017). 
  4. T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, and D. Zhang, Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment, Angew. Chem. Int. Ed., 57, 6115-6119 (2018). 
  5. M. Li, J. Lu, K. Luo, Y. Li, K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P. O. A. Persson, S. Du, Z. Chai, Z. Huang, and Q. Huang, Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes, J. Am. Chem. Soc., 141, 4730-4737 (2019). 
  6. M. R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y. S. Buranova, M. W. Barsoum, and Y. Gogotsi, Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases, Angew. Chem. Int. Ed., 53, 4877-4880 (2014). 
  7. N. Qureshi, C. H. Choi, and J. Doh, Expediting high-yield Mxene carbides and nitrides synthesis for next-generation 2D materials, Adv. Mater. Technol., 9, 2301611 (2024). 
  8. M. Naguib, R. R. Unocic, B. L. Armstrong, and J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes", Dalton Trans., 44, 9353-9358 (2015). 
  9. J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng, X. Yang, Z. Liu, R. Ma, T. Sasaki, and F. Geng, Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance, Angew. Chem. Int. Ed., 55, 14569-14574 (2016). 
  10. O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall'Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun., 4, 1716 (2013). 
  11. F. Han, S. Luo, L. Xie, J. Zhu, W. Wei, X. Chen, F. Liu, W. Chen, J. Zhao, L. Dong, K. Yu, X. Zeng, F. Rao, L. Wang, and Y. Huang, Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation, ACS Appl. Mater. Interfaces, 11, 8443-8452 (2019). 
  12. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, and Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater., 29, 7633-7644 (2017). 
  13. M. Shekhirev, Y. Ogawa, C. E. Shuck, M. Anayee, T. Torita, and Y. Gogotsi, Delamination of Ti3C2Tx nanosheets with NaCl and KCl for improved environmental stability of MXene films, ACS Appl. Nano Mater., 5, 16027-16032 (2022). 
  14. X. Huang and P. Wu, A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors, Adv. Funct. Mater., 30, 1910048 (2020). 
  15. Y. Liu, Q. Tang, M. Xu, J. Ren, C. Guo, C. Chen, W. Geng, W. Lei, X. Zhao, and D. Liu, Efficient mechanical exfoliation of MXene nanosheets, Chem. Eng. J., 468, 143439 (2023). 
  16. Y.-T. Du, X. Kan, F. Yang, L.-Y. Gan, and U. Schwingenschlögl, MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries, ACS Appl. Mater. Interfaces, 10, 32867-32873 (2018). 
  17. J. Miao, Q. Zhu, K. Li, P. Zhang, Q. Zhao, and B. Xu, Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors, J. Energy Chem., 52, 243-250 (2021). 
  18. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, and Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353, 1137-1140 (2016). 
  19. Y. Jin, Y. Fan, X. Meng, J. Li, C. Li, J. Sunarso, N. Yang, B. Meng, and W. Zhang, Modeling of hydrated cations transport through 2D MXene (Ti3C2Tx) membranes for water purification, J. Membr. Sci., 631, 119346 (2021). 
  20. Y.-J. Kim, S. J. Kim, D. Seo, Y. Chae, M. Anayee, Y. Lee, Y. Gogotsi, C. W. Ahn, and H.-T. Jung, Etching mechanism of monoatomic aluminum layers during MXene synthesis, Chem. Mater., 33, 6346-6355 (2021). 
  21. J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater., 26, 2374-2381 (2014). 
  22. G. Li, L. Tan, Y. Zhang, B. Wu, and L. Li, Highly efficiently delaminated single-layered MXene nanosheets with large lateral size, Langmuir, 33, 9000-9006 (2017). 
  23. X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc'h, C. Coutanceau, V. Mauchamp, and S. Celerier, A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water, J. Mater. Chem. A, 5, 22012-22023 (2017). 
  24. F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, L. Wang, and Q. Hu, Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties, Appl. Surf. Sci., 416, 781-789 (2017). 
  25. V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra, and M. W. Barsoum, 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents, Chem, 6, 616-630 (2020). 
  26. T. Oh, S. Lee, H. Kim, T. Y. Ko, S. J. Kim, and C. M. Koo, Fast and High-yield anhydrous synthesis of Ti3C2Tx MXene with high electrical conductivity and exceptional mechanical strength, Small, 18, e2203767 (2022). 
  27. S. Kumar, Fluorine-free MXenes: Recent advances, synthesis strategies, and mechanisms, Small, 20, e2308225 (2024). 
  28. J. Yoon, S. Kim, K. H. Park, S. Lee, S. J. Kim, H. Lee, T. Oh, and C. M. Koo, Biocompatible and oxidation-resistant Ti3C2Tx MXene with halogen-free surface terminations, Small Methods, 7, e2201579 (2023). 
  29. M. Li, X. Li, G. Qin, K. Luo, J. Lu, Y. Li, G. Liang, Z. Huang, J. Zhou, L. Hultman, P. Eklund, P. O. A. Persson, S. Du, Z. Chai, C. Zhi, and Q. Huang, Halogenated Ti3C2 MXenes with electro-chemically active terminals for high-performance zinc ion batteries, ACS Nano, 15, 1077-1085 (2021). 
  30. S. Yang, P. Zhang, F. Wang, A. G. Ricciardulli, M. R. Lohe, P. W. M. Blom, and X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system, Angew. Chem. Int. Ed., 57, 15491-15495 (2018). 
  31. C. Peng, P. Wei, X. Chen, Y. Zhang, F. Zhu, Y. Cao, H. Wang, H. Yu, and F. Peng, A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance, Ceram. Int., 44, 18886-18893 (2018). 
  32. A. Numan, S. Rafique, M. Khalid, H. A. Zaharin, A. Radwan, N. A. Mokri, O. P. Ching, and R. Walvekar, Microwave-assisted rapid MAX phase etching and delamination: A paradigm shift in MXene synthesis, Mater. Chem. Phys., 288, 126429 (2022).