References
- Alqahtani, M. M., & Powell, A. B. (2016). Instrumental appropriation of a collaborative, dynamic-geometry environment and geometrical understanding. International Journal of Education in Mathematics, Science and Technology, 4(2), 72.
- Alqahtani, M. M., & Powell, A. B. (2017). Mediational activities in a dynamic geometry environment and teachers' specialized content knowledge. Journal of Mathematical Behavior, 48, 77-94. https://doi.org/10.1016/j.jmathb.2017.08.004
- Alqahtani, M. M., & Powell, A. B. (2018). Teachers' instrumentation of a collaborative dynamic geometry environment. Horizontes, 36(1), 171-182. https://doi.org/10.24933/horizontes.v36i1.649
- Akyol, Z. & Garrison, R. D. (2008). The development of a community of inquiry over time in an online course: Understanding the progression and integration of social, cognitive and teaching presence. Journal of Asynchronous Learning Networks, 12(3), 3-22.
- Arbaugh, J. B. (2008). Does the community of inquiry framework predict outcomes in online MBA courses? International Review of Research in Open and Distance Learning, 9(2), 1-21. https://doi.org/10.19173/irrodl.v9i2.490
- Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14-17, 20-22, 43-46. http://hdl.handle.net/2027.42/65072
- Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
- Barcelos, G. T., Batista, S. C. F., & Passerino, L. M. (2011). Mediation in the construction of mathematical knowledge: A case study using dynamic geometry. Creative Education, 2(3), 252-263. http://dx.doi.org/10.4236/ce.2011.23034
- Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the Learning Sciences, 9(4), 403-436. https://doi.org/10.1207/S15327809JLS0904_2
- Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. D. English, & D. Kirshner (Eds.), Handbook of international research in mathematics education (2nd ed., pp. 746-783). Routledge.
- Bieda, K. N., Going, T., Kursav, M., & Edson, A.J. (2020, April 17-21). Entailments of productive disciplinary engagement in technology-enhanced mathematics classrooms [Conference paper]. The 2020 American Education Research Association Annual Meeting, San Francisco.
- Blatchford, P., Kutnick, P., Baines, E., & Galton, M. (2003). Toward a social pedagogy of classroom groupwork. International Journal of Educational Research, 39(1-2), 153-172. https://doi.org/10.1016/S0883-0355(03)00078-8
- Brufee, K. A. (1995). Sharing our toys: Cooperative learning versus collaborative learning. Change: The Magazine of Higher Learning, 27(1), 12-18. https://doi.org/10.1080/00091383.1995.9937722
- Cohen, E. G. (1990). Continuing to cooperate: Prerequisites for persistence. The Phi Delta Kappan, 72(2), 134-138.
- Cohen, E. G., & Lotan, R. A. (1995). Producing equal status interaction in the heterogeneous classroom. American Educational Research Journal, 32(1), 99-120. https://doi.org/10.3102/00028312032001099
- Common Core State Standards Initiative. (2018). Standards for mathematical practice. Retrieved January 29, 2024, from https://corestandards.org/wp-content/uploads/2023/09/Math_Standards1.pdf
- Edson, A. J., Kursav, M. N., & Sharma, A. (2018). Promoting collaboration and mathematical engagement in a digital learning environment. In T. E. Hodges, G. J. Roy, & A. M. Tyminski (Eds.), Proceedings of the 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1243-1246). University of South Carolina & Clemson University.
- Edson, A. J., & Phillips, E.D. (2021) Connecting a teacher dashboard to a student digital collaborative environment: supporting teacher enactment of problem-based mathematics curriculum. ZDM Mathematics Education, 53, 1285-1298. https://doi.org/10.1007/s11858-021-01310-w
- Furman, M., & Calabrese, B. A. (2006). Voice in an urban science video project. Journal of Research in Science Teaching, 43(7), 667-695.
- Hegedus, S. J., & Moreno-Armella, L. (2010). Accommodating the instrumental genesis framework within dynamic technological environments. For the Learning of Mathematics, 30(1), 26-31.
- Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific of students. Journal for Research in Mathematics Education, 39(4), 372-400.
- Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers' mathematical knowledge for teaching on student achievement. American Education Research Journal, 42(2), 371-406. https://doi.org/10.3102/00028312042002371
- Hoyles, C., & Noss, R. (2009). The technological mediation of mathematics and its learning. Human Development, 52(2), 129-147. https://doi.org/10.1159/000202730
- Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory into Practice, 38(2), 67-73. https://doi.org/10.1080/00405849909543834
- Koehler, M. J., & Mishra, P. (2008). Introducing TPCK. In M. J. Koehler, & P. Mishra (Eds.), Handbook of technological pedagogical content knowledge (TPCK) for educators (pp. 2-29). The AACTE Committee on Innovation and Technology.
- Koschmann, T. (1996). Paradigm shifts and instructional technology. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm. (pp. 1-23). Lawrence Erlbaum.
- Laborde, C. (2007). The role and uses of technologies in mathematics classrooms: Between challenge and modus Vivendi. Canadian Journal of Science, Mathematics and Technology Education, 7(1), 68-92. https://doi.org/10.1080/14926150709556721
- Lappan, G., Phillips, E. D., Fey, J. T., & Friel, S. N. (2014). Connected Mathematics 3. Pearson.
- Levin, M., Smith, J. P., Karunakaran, S., Kuchle, V. A., & Castle, S. (2020). Conceptualizing STEM majors' developing agency and autonomy in undergraduate mathematics. In M. Gresalfi, & I. S. Horn (Eds.), The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020 (Volume 2, pp. 887-888). International Society of the Learning Sciences.
- Lonchamp, J. (2012). An instrumental perspective on CSCL systems. International Journal of Computer-Supported Collaborative Learning, 7(2), 211-237. https://doi.org/10.1007/s11412-012-9141-4
- Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic environment. Educational Studies in Mathematics, 44(1-2), 25-53. https://doi.org/10.1023/A:1012733122556
- Medina, R., & Stahl, G. (2021). Analysis of group practices. In U. Cress, C. Rose, A. Wise, & J. Oshima (Eds.), International handbook of computer-supported collaborative learning (pp. 199-218). Springer. https://doi.org/10.1007/978-3-030-65291-3_11
- Miles, M. B., Huberman, A. M., & Saldana J. (2014). Qualitative data analysis: A methods sourcebook. SAGE Publication.
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.
- Hegedus, S. J., & Moreno-Armella, L. (2009). Intersecting representation and communication infrastructures. ZDM, 41, 399-412.
- Patterson, A. D. (2019). Equity in groupwork: The social process of creating justice in a science classroom. Cultural Studies of Science Education, 14, 361-381. https://doi.org/10.1007/s11422-019-09918-x
- Rabardel, P., & Beguin, P. (2005). Instrument mediated activity: From subject development to anthropocentric design. Theoretical Issues in Ergonomics Science, 6(5), 429-461. https://doi.org/10.1080/14639220500078179
- Richardson, J.C., Arbaugh, J.C. Cleveland-Innes, M., Ice, P., Swan, K. and Garrison, D.R. (2012). Using the community of inquiry framework to inform effective instructional design. In L. Moller, & J. Huett (Eds.), The next generation of distance education (pp. 97-125). Springer. https://doi.org/10.1007/978-1-4614-1785-9_7
- Ruthven, K. (2012). The didactical tetrahedron as a heuristic for analysing the incorporation of digital technologies into classroom practice in support of investigative approaches to teaching mathematics. ZDM Mathematics Education, 44, 627-640. https://doi.org/10.1007/s11858-011-0376-8
- Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484. https://doi.org/10.1002/sce.20306
- Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12(1), 5-51. https://doi.org/10.1207/S15327809JLS1201_2
- Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260. https://doi.org/10.1080/09500690500336957
- Sinclair, N., & Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135-150. https://doi.org/10.1080/14794800802233670
- Stahl, G. (2000). Collaborative information environments to support knowledge construction by communities. AI & Society, 14, 71-97. https://doi.org/10.1007/BF01206129
- Stahl, G. & C akir, M. (2008). Integrating synchronous and asynchronous support for group cognition in online collaborative learning. In the proceedings of the International Conference of the Learning Sciences (ICLS 2008) (pp. 351-358). International Society of the Learning Sciences.
- Stahl, G. (2016). Constructing dynamic triangles together: The development of mathematical group cognition. Cambridge University Press
- Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. https://doi.org/10.1080/1380361960020103
- Stephens, G. E., & Roberts, K. L. (2017). Facilitating collaboration in online groups. Journal of Educators Online, 14(1), 1-16.
- Tomaszewski, S. (2023). Modifying the didactical tetrahedron to describe aspects of mathematical digital collaborative learning. In Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13). Alfred Renyi Institute of Mathematics; Eotvos Lorand University of Budapest.
- Webb, N. (2013). Information processing approaches to collaborative learning. In C. E. Hmelo-Silver (Ed.), The international handbook of collaborative learning (pp. 19-40). Routledge.