References
- A. Alotaibi and M. Mursaleen, Generalized statistical convergence of difference sequences, Adv. Differ. Equ., 2013(1)(2013), 1-5.
- H. Altinok. Statistical convergence of order β for generalized difference sequences of fuzzy numbers, J. Intell. Fuzzy Syst., 26(2)(2014), 847-856.
- R. Antal, M. Chawla, V. Kumar, and B. Hazarika, On △m-statistical convergence double sequences in intuitionistic fuzzy normed spaces, Proyecciones (Antofagasta, On line), 41(3)(2022), 697-713.
- P. Baliarsingh, U. Kadak, and M. Mursaleen, On statistical convergence of difference sequences of fractional order and related korovkin type approximation theorems, Quaest. Math., 41(8)(2018), 1117-1133.
- T. Bera and N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Inf. Eng., 9(3)(2017), 299-324.
- N. Demir and H. Gumus, Rough statistical convergence for difference sequences, Kragujevac. J. Math., 46(5)(2022), 733-742.
- A. Esi, Generalized difference sequence spaces defined by Orlicz functions, Gen. Math., 17(2)(2009), 53-66.
- M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. Math., 21(4)(1995), 377-386.
- M. Et and F. Nuray, △m-statistical convergence, Indian J. Pure Appl. Math., 32(6)(2001), 961-969.
- M. Et and H. Sengul, On (△m, I)-lacunary statistical convergence of order α, J. Math. Anal., 7(5)(2016), 78-84.
- J. A. Fridy. On statistical convergence, Analysis, 5(1985), 301-313.
- B. Hazarika, Lacunary generalized difference statistical convergence in random 2- normed spaces, Proyecciones, 31(4)(2012), 373-390.
- V. A. Khan and M. D. Khan, Some topological character of neutrosophic normed spaces, Neutrosophic Sets Syst., 47(2021), 397-410.
- V. A. Khan, S. K. Rahaman, B. Hazarika, and M. Alam, Rough lacunary statistical convergence in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 45(5)(2023), 7335-7351.
- M. Kirisci and N. Simsek, Neutrosophic metric spaces, Math. Sci., 14(2020), 241-248.
- M. Kirisci and N. Simsek, Neutrosophic normed spaces and statistical convergence, J. Anal., 28(4)(2020), 1059-1073.
- O. Kisi, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 41(2)(2021), 2581-2590.
- O. Kisi and V. Gurdal, On triple difference sequences of real numbers in neutrosophic normed spaces, Commun. Adv. Math. Sci., 5(1)(2022), 35-45.
- H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169-176.
- V. Kumar, I. R. Ganaie, and A. Sharma, On Sλ-summability in neutrosophic soft normed linear spaces, Neutrosophic Sets Syst., 58(1)(2023), 556-571.
- S. A. Mohiuddine and B. Hazarika, Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat, 31(6)(2017), 1827-1834.
- M. Mursaleen, λ-statistical convergence, Math. Slovaca, 50(1)(2000), 111-115.
- S. Omran and A. Elrawy, Continuous and bounded operators on neutrosophic normed spaces, Neutrosophic Sets Syst., 46(2021), 276-289.
- M. Sen and M. Et, Lacunary statistical and lacunary strongly convergence of generalized difference sequences in intuitionistic fuzzy normed linear spaces, Bol. Soc. Paran. Mat., 38(1)(2020), 117-129.
- F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, IEEE International Conference on Granular Computing, Atlanta, GA, USA, (2006), 38-42.
- B. C. Tripathy and A. Baruah, Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50(4)(2010), 565-574.
- H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Infinite study, 2010.
- J. Ye, A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst., 26(5)(2014), 2459-2466.